Log in

Impedance spectroscopy and piezoelectric property of LiF-doped PZN–PZT low-temperature sintering piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-temperature sintering piezoelectric ceramics of 0.3Pb(Zn1/3Nb2/3)O3–0.7Pb(Zr0.49Ti0.51)O3 with LiF and Sm2O3 additives were fabricated by a conventional solid-state reaction. In view of the possible defects caused by LiF do**, the as-sintered specimens were annealed in oxygen to enhance grain size and piezoelectric properties. X-ray diffraction revealed that Sm2O3 and LiF were dissolved in the lattices, forming a pure perovskite structure. Scanning electron microscopy showed that the grain size decreased with increased LiF amount. Hysteresis-loop studies indicated that increased LiF led to ferroelectricity deterioration. Impedance spectroscopy and activation-energy analyses revealed decreased oxygen vacancies after annealing in oxygen. Energy-dispersive spectrometry revealed that fluorine volatilized during annealing in oxygen. Thus, the decreased amounts of FO and VO were presumed responsible for the improved piezoelectric properties. Upon do** 1 mol% LiF, sintering temperature decreased from 1125 to 950 °C. Annealing in oxygen greatly improved the piezoelectric properties from d33 = 252 pC/N and Kp = 0.53 to d33 = 403 pC/N and Kp = 0.56, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Banlue, N. Vittayakorn, Effect of Pb(Zn1/3Nb2/3)O3 additions on phase structure, ferroelectric and dielectric properties of PbZrO3 ceramics. Ferroelectrics 382(1), 122–126 (2009)

    Article  CAS  Google Scholar 

  2. N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M.A. Marquardt, D.P. Cann, Dielectric properties and morphotropic phase boundaries in the xPb (Zn1/3Nb2/3)O3–(1 − x)Pb (Zr0.5Ti0.5O3 pseudo-binary system. J. Electroceram. 16(2), 141–149 (2006)

    Article  CAS  Google Scholar 

  3. N. Vittayakorn, C. Puchmark, G. Rujijanagul, X. Tan, D.P. Cann, Piezoelectric properties of (1 − x) Pb(Zr1/2Ti1/2)O3–xPb(Zn1/3Nb2/3)O3 ceramics prepared by the columbite-(wolframite) precursor method. J. Curr. Appl. Phys. 6(3), 303–306 (2006)

    Article  Google Scholar 

  4. A. Ngamjarurojana, S. Ural, S.H. Park, S. Ananta, R. Yimnirun, K. Uchino, Piezoelectric properties of low temperature sintering in Pb(Zr,Ti)O3–Pb(Zn,Ni)1/3Nb2/3O3 ceramics for piezoelectric transformer applications. Ceram. Int. 34(4), 705–708 (2008)

    Article  CAS  Google Scholar 

  5. L. Amarande, C. Miclea, M. Cioangher, M.N. Grecu, I. Pasuk, Effects of vanadium do** on sintering conditions and functional properties of Nb, Li co-doped PZT ceramics. Comments on Li location. J. Alloy. Compd. 685, 159–166 (2016)

    Article  CAS  Google Scholar 

  6. Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5 PZN-0.5 PZT systems. J. Appl. Phys. 102(8), 084507 (2007)

    Article  Google Scholar 

  7. D.M. Lin, K.W. Kwok, H.Y. Tian, H. W. L. Chan. Phase transitions and electrical properties of (Na1 − xKx)(Nb1 − ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. J. Am. Ceram. Soc. 90(5), 1458–1462 (2007)

    Article  CAS  Google Scholar 

  8. G.F. Fan, M.B. Shi, W.Z. Lu, Y.Q. Wang, F. Liang, Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics. J. Eur. Cream. Soc. 34(1), 29–34 (2014)

    Article  Google Scholar 

  9. D.M. Lin, K.W. Kwok, H.W.L. Chan, Structure, dielectric, and piezoelectric of CuO-doped K0.5Na0.5NbO3–BaTiO3 lead-free ceramics. J. Appl. Phys. 102, 074113 (2007)

    Article  Google Scholar 

  10. S. Lee, C. Yoon, H. Kim, K. Lee, Low-temperature sintering of MnO2 doped PZT-PZN Piezoelectric ceramics. J. Electroceram. 18(3), 311–315 (2007)

    Article  CAS  Google Scholar 

  11. M. Ebru, M.Y. Kaya, D. Avdan, S. Alkoy, Properties of [Pb(Zn1/3Nb2/3)O3]x–[Pb(Zr0.48Ti0.52)O3](1 – x) ceramics with low sintering temperature and their 1–3 piezocomposites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 63(6), 907–914 (2016)

    Article  Google Scholar 

  12. L. Zhao, B.P. Zhang, P.F. Zhou, X.K. Zhao, L.F. Zhu, Effect of the orthorhombic/rhombohedral volume ratio on the piezoelectric properties of BaCaxTiO3–0.04LiF ceramics. Phys. Status. Solidi (a). 211(3), 611–617 (2014)

    Article  CAS  Google Scholar 

  13. W.G. Yang, B.P. Zhang, N. Ma, L. Zhao, High piezoelectric properties of BaTiO3–xLiF ceramics sintered at low temperatures. J. Eur. Ceram. Soc. 32(4), 899–904 (2012)

    Article  CAS  Google Scholar 

  14. L.F. Zhu, B.P. Zhang, W.G. Yang, Enhancing piezoelectric coefficient d33 in LiF-doped BaTiO3 ceramics by optimizing excess Ba content. Mater. Res. Bull. 52, 158–161 (2014)

    Article  CAS  Google Scholar 

  15. K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc. 95(9), 2928–2933 (2012)

    Article  CAS  Google Scholar 

  16. J. Zhang, Y. Zhou, Z. Yue, Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg1– xZnxSi2O6 ceramics. Ceram. Int. 39(2), 2051–2058 (2013)

    Article  CAS  Google Scholar 

  17. J. Zhang, Y. Zhou, B. Peng, Z. **e, X. Zhang, Z. Yue, Microwave dielectric properties and thermally stimulated depolarization currents of MgF2-doped diopside ceramics. J. Am. Ceram. Soc. 97(11), 3537–3543 (2014)

    Article  CAS  Google Scholar 

  18. L. Eyraud, P. Eyraud, D. Audigier, C. Richard, B. Claudel, Fluoridated PZT ceramics for power transducers. J. Solid. State. Chem. 130(1), 103–109 (1997)

    Article  CAS  Google Scholar 

  19. B. Guiffard, E. Boucher, L. Lebrun, D. Guyomar, E. Pleska, Influence of fluorine co-do** on the properties of cationic doped PZT ceramics. Effect on the valency state of acceptor and donor dopants. Ferroelectrics. 313(1), 135–144 (2004)

    Article  CAS  Google Scholar 

  20. B. Guiffard, M. Troccaz, Fluorine-oxygen substitution in MgO-doped lead zirconate titanate ceramics: diffractometric and dielectric studies. J. Mater. Sci. 35(1), 101–104 (2000)

    Article  CAS  Google Scholar 

  21. B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, D. Guyomar, Influence of donor co-do** by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J. Eur. Ceram. Soc. 25(12), 2487–2490 (2005)

    Article  CAS  Google Scholar 

  22. P. X.Wang, X. Liang, Z. Chao, Yang, Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc. 98(5), 1506–1514 (2015)

    Article  Google Scholar 

  23. N.V. Prasad, K. Srinivas, A.R. James, Impedance spectroscopic studies on SmBi3Ti3O12 ceramics. Ferroelectrics. 282(1), 5195–5203 (2003)

    Article  Google Scholar 

  24. X. Wang, P. Liang, X. Chao, Z. Yang, Dielectric properties and impedance spectroscopy of MnCO3-modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Am. Ceram. Soc. 98(5), 1506–1514 (2015)

    Article  CAS  Google Scholar 

  25. M.V. Raymond, D.M. Smyth, Defects and charge transport in perovskite ferroelectrics. J. Phys. Chem. Solids. 57(10), 1507–1511 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by International Scientific and Technological Innovation Cooperation Key Projects for National Key R&D Program of China (No.2016YFE0203900), the national Nature Science Foundation of China through Grant (Nos.61201051), and the Fundamental Research Funds for the Central Universities of China (HUST: 2016JCTD114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Wu, Q., Hao, M. et al. Impedance spectroscopy and piezoelectric property of LiF-doped PZN–PZT low-temperature sintering piezoelectric ceramics. J Mater Sci: Mater Electron 29, 8279–8286 (2018). https://doi.org/10.1007/s10854-018-8836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8836-3

Navigation