Log in

Dielectric relaxation, impedance spectra, temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free (1−x)K0.5Na0.5NbO3-x mol%Sr2MnSbO6 (abbreviated as KNN–xSMS, x = 0, 1 and 2) piezoelectric ceramics were prepared using the conventional solid-state sintering method. The effects of SMS on the microstructure and electrical properties of the KNN ceramics are investigated. 1 mol% SMS can greatly enhance the densification and increase the piezoelectric properties. Higher do** amounts will decrease the grain size and reduce electrical properties. The x = 0 and 1 samples show normal ferroelectric phase transition behavior, while the x = 2 sample exhibits diffuse phase transition behavior. Besides, after do** 1 mol% SMS, the field-induced unipolar strain and the remnant polarization vary less than undoped KNN ceramics in the temperature range of 30–160 °C. Therefore, do** SMS is an effective way to promote the temperature stability and electrical properties of KNN piezoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zheng, J. Wang, X. Huo, R. Wang, S. Sang, S. Li, P. Zheng, W. Cao, J. Appl. Phys. 116, 044105 (2014)

    Article  CAS  Google Scholar 

  2. L. Zheng, R. Sahul, S. Zhang, W. Jiang, S. Li, W. Cao, J. Appl. Phys. 114, 104105 (2013)

    Article  CAS  Google Scholar 

  3. L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467–1472 (2011)

    Article  CAS  Google Scholar 

  4. H. Tian, C. Hu, X. Meng, P. Tan, Z. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180–1185 (2015)

    Article  CAS  Google Scholar 

  5. L. Liu, D. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116, 184104 (2014)

    Article  CAS  Google Scholar 

  6. L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, W. Cao, Appl. Phys. Lett. 103, 122905 (2013)

    Article  CAS  Google Scholar 

  7. J. Hao, Z. Xu, R. Chu, Y. Zhang, P. Fu, G. Li, Q. Yin, Phys. B 404, 3391–3396 (2009)

    Article  CAS  Google Scholar 

  8. P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, J. Hao, Mater. Des. 31, 796–801 (2010)

    Article  CAS  Google Scholar 

  9. J. Hao, Z. Xu, R. Chu, W. Li, G. Li, Q. Yin, J. Alloys Compd. 484, 233–238 (2009)

    Article  CAS  Google Scholar 

  10. T. Zheng, J. Wu, D. **ao, J. Zhu, X. Wang, X. Lou, J. Mater. Chem. A 3, 1868 (2015)

    Article  CAS  Google Scholar 

  11. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, Mater. Res. Bull. 65, 94–102 (2015)

    Article  CAS  Google Scholar 

  12. Z. Wang, W. Li, R. Chu, J. Hao, Z. Xu, G. Li, J. Mater. Sci.: Mater. Electron. 28, 16561–16569 (2017)

    CAS  Google Scholar 

  13. Y. Yang, Y. Zhou, J. Ren, Q. Zheng, K. Lam, D. Lin, J. Am. Ceram. Soc. 101, 2594–2605 (2018)

    Article  CAS  Google Scholar 

  14. M. Saleem, M.S. Kim, I.S. Kim, S.J. Jeong, Ceram. Int. 42, 13960–13968 (2016)

    Article  CAS  Google Scholar 

  15. K. Wang, J.F. Li, N. Liu, Appl. Phys. Lett. 93, 092904 (2008)

    Article  CAS  Google Scholar 

  16. T. Zheng, J.G. Wu, D.Q. **ao, J.G. Zhu, Prog. Mater Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  17. W.F. Bai, D.Q. Chen, Y.W. Huang, P. Zheng, J.S. Zhong, M.Y. Ding, Y.J. Yuan, B. Shen, J.W. Zhai, Z.G. Ji, Ceram. Int. 42, 7669–7680 (2016)

    Article  CAS  Google Scholar 

  18. W.F. Bai, J.H. **, J. Zhang, B. Shen, J.W. Zhai, H.X. Yan, J. Eur. Ceram. Soc. 35, 2489–2499 (2015)

    Article  CAS  Google Scholar 

  19. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  CAS  Google Scholar 

  20. Y.C. Liu, Y.F. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S.T. Zhang, R.X. Wang, W.W. Cao, ACS Appl. Mater. Int. 9, 29863–29871 (2017)

    Article  CAS  Google Scholar 

  21. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  22. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 130, 2236–2239 (1991)

    Article  Google Scholar 

  23. X.M. Liu, X.L. Tan, Adv. Mater. 28, 574–578 (2016)

    Article  CAS  Google Scholar 

  24. P. Li, J.W. Zhai, B. Shen, S.J. Zhang, X.L. Li, F.Y. Zhu, X.M. Zhu, Adv. Mater. 30, 1705171 (2018)

    Article  CAS  Google Scholar 

  25. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  CAS  Google Scholar 

  26. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  CAS  Google Scholar 

  27. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706–709 (2006)

    Article  CAS  Google Scholar 

  28. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121–4213 (2004)

    Article  CAS  Google Scholar 

  29. J.G. Wu, D.Q. **ao, J.G. Zhu, Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  30. F. Zhu, M.B. Ward, J. Li, S.J. Milne, Acta Mater. 90, 204–212 (2015)

    Article  CAS  Google Scholar 

  31. F.Z. Yao, Q. Yu, K. Wang, Q. Li, J.F. Li, RSC Adv. 4, 20062–20068 (2014)

    Article  CAS  Google Scholar 

  32. J.G. Wu, D.Q. **ao, Y.Y. Wang, W.J. Wu, B. Zhang, J.G. Zhu, J. Am. Ceram. Soc. 91, 3402–3404 (2008)

    Article  CAS  Google Scholar 

  33. J. Wu, Y. Wang, H. Wang, Phase boundary, poling condition. RSC Adv. 4, 64835–64842 (2014)

    Article  CAS  Google Scholar 

  34. Y.J. Dai, X.W. Zhang, G.Y. Zhou, Appl. Phys. Lett. 90, 262903 (2007)

    Article  CAS  Google Scholar 

  35. B.Y. Zhang, J.G. Wu, X.J. Cheng, X.P. Wang, D.Q. **ao, J.G. Zhu, X.J. Wang, X.J. Lou, ACS Appl. Mater. Int. 5, 7718–7725 (2013)

    Article  CAS  Google Scholar 

  36. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. **ao, J.G. Zhu, Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  37. T. Zheng, W.J. Wu, J.G. Wu, J.G. Zhu, D.Q. **ao, J. Mater. Chem. C 4, 9779–9787 (2016)

    Article  CAS  Google Scholar 

  38. S.J. Zhang, R. **a, T.R. Shrout, Appl. Phys. Lett. 91, 132913 (2007)

    Article  CAS  Google Scholar 

  39. C. Wang, T.D. **a, X.J. Lou, S.T. Tian, J. Mater. Sci. 52, 11337–11345 (2017)

    CAS  Google Scholar 

  40. Z. Tan, J. **ng, L.M. Jiang, J.G. Zhu, B. Wu, Front. Mater. Sci. 11, 344–352 (2017)

    Article  Google Scholar 

  41. P.Q. Long, X.T. Liu, X. Long, Z.G. Yi, J. Alloy. Compd. 706, 234–243 (2017)

    Article  CAS  Google Scholar 

  42. M.A. Marwat, B. **e, M. Ashtar, Y.W. Zhu, P.Y. Fan, H.B. Zhang, Ceram. Int. 44, 6843–6850 (2018)

    Article  CAS  Google Scholar 

  43. S.S. Dong, J. Du, Z.J. Xu, R.Q. Chu, W. Li, J.G. Hao, J.L. Liu, P. Zheng, Ceram. Int. 42, 8051–8057 (2016)

    Article  CAS  Google Scholar 

  44. Y.Y. Gong, X. He, C. Chen, Z.G. Yi, Ceram. Int. 45, 7173–7179 (2019)

    Article  CAS  Google Scholar 

  45. H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Eur. Ceram. Soc. 32, 4341–4352 (2012)

    Article  CAS  Google Scholar 

  46. M.R. Bafandeh, R. Gharahkhani, J.-S. Lee, J. Alloys Compd. 602, 285–289 (2014)

    Article  CAS  Google Scholar 

  47. D. Lin, K.W. Kwok, H.L. Chan, J. Am. Ceram. Soc. 92, 2765–2767 (2009)

    Article  CAS  Google Scholar 

  48. Z.Y. Cen, Y.C. Zhen, W. Feng, P.Y. Zhao, L.L. Chen, X.H. Wang, L.T. Li, J. Eur. Ceram. Soc. 38, 3136–3146 (2018)

    Article  CAS  Google Scholar 

  49. Z.Y. Cen, X.H. Wang, Y. Huan, L.T. Li, J. Am. Ceram. Soc. 101, 2391–2407 (2018)

    Article  CAS  Google Scholar 

  50. P. Jaiban, A. Watcharapasorn, R. Yimnirum, R. Guo, A. Bhalla, J. Alloys Compd. 695, 1329–1335 (2017)

    Article  CAS  Google Scholar 

  51. R. Ndioukane, M. Toure, D. Kobor, L. Motte, M. Pasquinelli, J. Solard, Int. J. Mod. Phys. A 9, 259–272 (2018)

    CAS  Google Scholar 

  52. K. Uchino, S. Nomura, Ferroelectronics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  53. C. Liu, L. Shi, Y.M. Lai, Y.X. Li, L.J. Jia, H. Su, J. Li, T.L. Wen, W.W. Ling, H.W. Zhang, Ceram. Int. 44, 8109–8115 (2018)

    Article  CAS  Google Scholar 

  54. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004)

    Article  CAS  Google Scholar 

  55. Z. Sun, L.X. Li, J.T. Li, H.R. Zheng, W.J. Luo, Ceram. Int. 42, 10833–10837 (2016)

    Article  CAS  Google Scholar 

  56. A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, Phys. Rev. B 68, 052102 (2003)

    Article  CAS  Google Scholar 

  57. X.D. Qi, Y. Zhao, E.W. Sun, J. Du, K. Li, Y. Sun, B. Yang, R. Zhang, W.W. Cao, J. Eur. Ceram. Soc. 39, 4060–4069 (2019)

    Article  CAS  Google Scholar 

  58. E.W. Sun, X.D. Qi, Z.Y. Yuan, S.J. Sang, R. Zhang, B. Yang, W.W. Cao, L.C. Zhao, Ceram. Int. 42, 4893–4898 (2016)

    Article  CAS  Google Scholar 

  59. Z.H. Zhao, Y.J. Dai, F. Huang, Sustain. Mater. Technol. 17, e00092 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2018MEM011, ZR201709250374, ZR2017MEM019 and ZR2016EMM02), the National Key R&D Program of China (Grant No. 2016YFB0402701), the Key R & D project of Shandong Province (Grant No. 2017GGX202008) and the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J17KA005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Du or Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Du, J., Chen, C. et al. Dielectric relaxation, impedance spectra, temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics. J Mater Sci: Mater Electron 31, 959–966 (2020). https://doi.org/10.1007/s10854-019-02606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02606-0

Navigation