Log in

Study of structural and magnetoelectric properties of 1−x(Ba0.96Ca0.04TiO3)–x(ZnFe2O4) ceramic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic ceramic composites of (1−x)Ba0.96Ca0.04TiO3–(x)ZnFe2O4 (BCT-ZF) were prepared from ferroelectric (FE) barium calcium titanate (BCT) and ferromagnetic (FM) zinc ferrite (ZF) by using the solid state reaction method with different mol% fractions of x (x = 0.1 and 0.2). The preliminary structural studies carried out by X-ray diffraction at room temperature reveals that the samples have a tetragonal structure along with the cubic spinel ferrite phase. Raman spectra of the composites also confirm the existence of BCT phase and ZF phase. The room temperature ferroelectric polarization measurements as a function of magnetic field show the existence strong magnetoelectric coupling of 10.85 (mV/(cm.Oe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)

    Article  Google Scholar 

  2. P. Fischer et al., Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C 13(10), 1931 (1980)

    Article  Google Scholar 

  3. G.A. Smolenskiĭ, I.E. Chupis, Ferroelectromagnets. Soviet Phys. Uspekhi 25(7), 475 (1982)

    Article  Google Scholar 

  4. J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003)

    Article  Google Scholar 

  5. Y. Tokura, Multiferroics as quantum electromagnets. Science 312(5779), 1481 (2006)

    Article  Google Scholar 

  6. J.F. Scott, Data storage: multiferroic memories. Nat Mater. 6(4), 256–257 (2007)

    Article  Google Scholar 

  7. R. Palai et al., β phase and γ− β metal-insulator transition in multiferroic Bi Fe O3. Phys. Rev. B 77(1), 014110 (2008)

    Article  Google Scholar 

  8. R. Palai, J.F. Scott, R.S. Katiyar, Phonon spectroscopy near phase transition temperatures in multiferroic BiFeO3 epitaxial thin films. Phys. Rev. B 81(2), 024115 (2010)

    Article  Google Scholar 

  9. S.Y. Yang et al., Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87(10), 102903 (2005)

    Article  Google Scholar 

  10. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    Article  Google Scholar 

  11. S.V. Kalinin, Multiferroics: Making a point of control. Nat. Phys., 13, 115–116 (2017)

    Article  Google Scholar 

  12. S. Nakashima et al., First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys. Rev. B 75(17), 174443 (2007)

    Article  Google Scholar 

  13. K.C. Verma, S. Tripathi, R. Kotnala, Magneto-electric/dielectric and fluorescence effects in multiferroic x BaTiO3–(1−x) ZnFe2O4 nanostructures. RSC Adv. 4(104), 60234–60242 (2014)

    Article  Google Scholar 

  14. E.V. Ramana et al., Effect of Fe-do** on the structure and magnetoelectric properties of (Ba 0.85 Ca 0.15)(Ti 0.9 Zr 0.1) O3 synthesized by a chemical route. J. Mater. Chem. C 4(5), 1066–1079 (2016)

    Article  Google Scholar 

  15. M. Bichurin et al., Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide. J. Magn. Magn. Mater. 424, 115–117 (2017)

    Article  Google Scholar 

  16. A. Sukhov et al., Magnetoelectric coupling in a ferroelectric/ferromagnetic chain revealed by ferromagnetic resonance. J. Appl. Phys. 113(1), 013908 (2013)

    Article  Google Scholar 

  17. C.-L. Jia et al., Mechanism of interfacial magnetoelectric coupling in composite multiferroics. Phys. Rev. B 90(5), 054423 (2014)

    Article  Google Scholar 

  18. R. Rai et al., Dielectric and magnetic studies of (NKNLS) 1−x–(NZFO) x multiferroic composites. J. Alloys Compd. 614, 277–282 (2014)

    Article  Google Scholar 

  19. J. Ma et al., Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)

    Article  Google Scholar 

  20. C.-W. Nan et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Article  Google Scholar 

  21. P. Kumaria et al., State-of-the-art of lead free ferroelectrics: a critical review. Adv. Mater. Lett. 6(6), 453–484 (2015)

    Article  Google Scholar 

  22. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  Google Scholar 

  23. T. Tou et al., Properties of (Bi0.5Na0.5) T 3 3 0 5 N 0 1 N2O3 lead—free piezoelectric ceramics and its application to ultrasonic cleaner. Jpn. J. Appl. Phys. 48(7S), 07GM03 (2009)

    Google Scholar 

  24. M. Lal et al., Structural, Dielectric and Impedance Studies of KNNS–BKT Ceramics. Am. J. Mater. Sci. 7(2), 25–34 (2017)

    Google Scholar 

  25. A. Singh, R. Chatterjee, Structural and electrical properties of BKT rich Bi0.5K0.5TiO3–K0.5Na0.5NbO3 system. AIP Adv. 3(3), 032129 (2013)

    Article  Google Scholar 

  26. H.F. Kay, P. Vousden, XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 40(309), 1019–1040 (1949)

    Article  Google Scholar 

  27. A. Bratkovsky, A. Levanyuk, Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Physical Rev. Lett. 94(10), 107601 (2005)

    Article  Google Scholar 

  28. E.J. Choi, Y. Ahn, E.J. Hahn, Size dependence of the magnetic properties in superparamagnetic zinc-ferrite nanoparticles. J. Kor. Phys. Soc. 53(4), 2090–2094 (2008)

    Google Scholar 

  29. J. Hochepied, P. Bonville, M. Pileni, Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104(5), 905–912 (2000)

    Article  Google Scholar 

  30. S. Stewart et al., Cationic exchange in nanosized Zn Fe2O4 spinel revealed by experimental and simulated near-edge absorption structure. Phys. Rev. B 75(7), 073408 (2007)

    Article  Google Scholar 

  31. S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics. J. Integr. Sci. Technol. 4(1), 10–16 (2016)

    Google Scholar 

  32. V.S. Puli et al., Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT–BCT ceramic capacitors. J. Phys. Chem. Solids 74(3), 466–475 (2013)

    Article  Google Scholar 

  33. J. Pokorný et al., Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109(11), 114110 (2011)

    Article  Google Scholar 

  34. J.P. Singh et al., Micro-Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation. J. Raman Spectrosc. 42(7), 1510–1517 (2011)

    Article  Google Scholar 

  35. A. Khamkongkaeo et al., Frequency-dependent magnetoelectricity of CoFe2O4-BaTiO3 particulate composites. Trans. Nonferr. Metals Soc. China 21(11), 2438–2442 (2011)

    Article  Google Scholar 

  36. S. Pachari, Structure, microstructure and magneto-dielectric properties of barium titanate-ferrite based composites. (National Institute of Technology Rourkela, Rourkela, 2015)

    Google Scholar 

  37. A.S. Kumar et al., Multiferroic and magnetoelectric properties of Ba 0.85Ca 0.15 Zr 0.1 Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)

    Article  Google Scholar 

  38. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)

    Article  Google Scholar 

  39. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  Google Scholar 

  40. O. Udalov, N. Chtchelkatchev, I. Beloborodov, Coupling of ferroelectricity and ferromagnetism through Coulomb blockade in composite multiferroics. Phys. Rev. B 89(17), 174203 (2014)

    Article  Google Scholar 

  41. L. Chotorlishvili et al., Dynamics of localized modes in a composite multiferroic chain. Phys. Rev. Lett. 111(11), 117202 (2013)

    Article  Google Scholar 

  42. N. Sedlmayr, V. Dugaev, J. Berakdar, Current-induced interactions of multiple domain walls in magnetic quantum wires. Phys. Rev. B 79(17), 174422 (2009)

    Article  Google Scholar 

  43. H. Katsura, N. Nagaosa, A.V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95(5), 057205 (2005)

    Article  Google Scholar 

  44. S.S. Nair et al., Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. J. Appl. Phys. 114(6), 064309 (2013)

    Article  Google Scholar 

  45. H. Greve et al., Giant magnetoelectric coefficients in (Fe 90 Co 10) 78 Si 12 B 10–AlN thin film composites. Appl. Phys. Lett. 96(18), 182501 (2010)

    Article  Google Scholar 

  46. C.-W. Nan et al., Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B 71(1), 014102 (2005)

    Article  Google Scholar 

  47. V. Corral-Flores et al., Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99(8), 08J503 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Defence Research and Development Organization (DRDO), Govt. of India, for financial support under the research project ERIP/ER/1303129/M/01/1564. The work at UPR is support by National Science Foundation (NSF DMR-1410869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radheshyam Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, M., Shandilya, M., Kumar, A.S. et al. Study of structural and magnetoelectric properties of 1−x(Ba0.96Ca0.04TiO3)–x(ZnFe2O4) ceramic composites. J Mater Sci: Mater Electron 29, 80–85 (2018). https://doi.org/10.1007/s10854-017-7890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7890-6

Navigation