Log in

Design and preparation of flame-resistant geopolymer coatings for timber

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work presents an innovative flame-resistance geopolymer coating for timber. Low-melting point glass powders are employed to improve the workability and impactness of the composite coating. The results indicate that the composite coatings endow the timber with not only flame-retardant property but also enhanced mechanical strength. Besides, hydrophobic surface can be constructed on the composite coating by using methyl silicone oil, which significantly improves the durability of the geopolymer coating. This work provides a new insight into design of flame-resistance coatings for inflammable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

The data that support the findings of this research are available from the corresponding author upon reasonable request.

References

  1. Wang Y, Kou X, Shi H, Zhao J, Deng J, **n A (2022) Enhanced flame retardancy of modified β-cyclodextrin doped silica fume-based geopolymeric coating covered on plywood. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.127231

    Article  Google Scholar 

  2. Uddin Ahmed Shaikh F, Haque S, Sanjayan J (2018) Behavior of fly ash geopolymer as fire resistant coating for timber. J Sustain Cem Based Mater 8:259. https://doi.org/10.1080/21650373.2018.1537015

    Article  CAS  Google Scholar 

  3. Qu L, Rahimi S, Qian J, He L, He Z, Yi S (2021) Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109429

    Article  Google Scholar 

  4. Li P, Zhang Y, Zuo Y, Lu J, Yuan G, Wu Y (2020) Preparation and characterization of sodium silicate impregnated chinese fir wood with high strength water resistance flame retardant and smoke suppression. J Market Res 9:1043. https://doi.org/10.1016/j.jmrt.2019.10.035

    Article  CAS  Google Scholar 

  5. Liu X, Fan Y, Li Y et al (2022) The enhanced surface properties of geopolymer inorganic coatings by adding with MgO. J Coat Technol Res 19:947. https://doi.org/10.1007/s11998-021-00572-z

    Article  CAS  Google Scholar 

  6. Wang Y, Kou X, Deng J, Zhao J, Shi H (2022) Ammonium polyphosphate/expandable graphite/TiO2 blended silica fume-based geopolymer coating for synergistically flame-retarding plywood. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.125941

    Article  Google Scholar 

  7. Hao Y, Gao J, Lv Y, Liu J (2022) Low melting point alloys enabled stiffness tunable advanced materials. Adv Func Mater 32:2201942. https://doi.org/10.1002/adfm.202201942

    Article  CAS  Google Scholar 

  8. Temuu** J, Minjigmaa A, Rickard W, Lee M, Williams I, van Riessen A (2009) Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl Clay Sci 46:265. https://doi.org/10.1016/j.clay.2009.08.015

    Article  CAS  Google Scholar 

  9. Mellado A, Catalán C, Bouzón N, Borrachero M, Monzó J, Payá J (2014) Carbon footprint of geopolymeric mortar study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv 4:23846

    Article  CAS  Google Scholar 

  10. Wu Y, Lu B, Bai T et al (2019) Geopolymer green alkali activated cementitious material synthesis applications and challenges. Constr Build Mater 224:930. https://doi.org/10.1016/j.conbuildmat.2019.07.112

    Article  CAS  Google Scholar 

  11. Lv X, Guo P, Liu H, Cui L, Cui X (2018) Preparation of paraffin-based phase-change microcapsules and application in geopolymer coating. J Coat Technol Res 15:867. https://doi.org/10.1007/s11998-018-0071-6

    Article  CAS  Google Scholar 

  12. Guo B, Liu Y, Zhang Q et al (2017) Efficient flame-retardant and smoke-suppression properties of Mg-Al-Layered double-hydroxide nanostructures on wood substrate. ACS Appl Mater Interfaces 9:23039. https://doi.org/10.1021/acsami.7b06803

    Article  CAS  Google Scholar 

  13. Wang Y, Kou X, Zhao J, Deng J (2022) A strategy to improve the compatibility of carboxyl methyl cellulose with silica fume-based geopolymer inorganic siliceous coatings for flame-retarding plywood. J Appl Polym Sci 139:e53090

    Article  CAS  Google Scholar 

  14. Wang Y, Zhao J (2020) Effect of graphite on the flame resistance of silica fume-based geopolymeric coatings. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122088

    Article  Google Scholar 

  15. Bignozzi MC, Saccani A, Barbieri L, Lancellotti I (2015) Glass waste as supplementary cementing materials the effects of glass chemical composition. Cem Concr Compos 55:45. https://doi.org/10.1016/j.cemconcomp.2014.07.020

    Article  CAS  Google Scholar 

  16. Heriyanto FP, Sahajwalla V (2018) Waste glass powder – Innovative value-adding resource for hybrid wood-based products. J Clean Prod 195:215. https://doi.org/10.1016/j.jclepro.2018.05.205

    Article  CAS  Google Scholar 

  17. Sahin A, Tasdemir HM, Karabulut AF, Gürü M (2017) Mechanical and thermal properties of particleboard manufactured from waste peachnut shell with glass powder. Arab J Sci Eng 42:1559. https://doi.org/10.1007/s13369-017-2427-0

    Article  CAS  Google Scholar 

  18. Ding Y, Chen Z, Yin P (2023) Self-repairing non-expanded flame-retardant coatings prepared by sol-gel method. J Sol-Gel Sci Technol 106:545. https://doi.org/10.1007/s10971-023-06077-y

    Article  CAS  Google Scholar 

  19. Elaqra H, Rustom R (2018) Effect of using glass powder as cement replacement on rheological and mechanical properties of cement paste. Constr Build Mater 179:326. https://doi.org/10.1016/j.conbuildmat.2018.05.263

    Article  CAS  Google Scholar 

  20. Chen Q, Zhou J, Liu B, Mei Q, Luo Z (2011) Influence of torrefaction pretreatment on biomass gasification technology. Chin Sci Bull 56:1449

    Article  CAS  Google Scholar 

  21. Guo F, Zhang X, Yang R, Salmén L, Yu Y (2021) Hygroscopicity, degradation and thermal stability of isolated bamboo fibers and parenchyma cells upon moderate heat treatment. Cellulose 28:8867

    Article  CAS  Google Scholar 

  22. Cho W, Shields JR, Dubrulle L et al (2022) Ion—complexed chitosan formulations as effective fire-retardant coatings for wood substrates. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2022.109870

    Article  Google Scholar 

  23. Liu L, Qian M, Pa Song G, Huang YYu, Fu S (2016) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4:2422. https://doi.org/10.1021/acssuschemeng.6b00112

    Article  CAS  Google Scholar 

  24. Andersson S, Serimaa R, Väänänen T, Paakkari T, Jämsä S, Viitaniemi P (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris L.). Holzforschung 59:422. https://doi.org/10.1515/HF.2005.069

    Article  CAS  Google Scholar 

  25. Wang Y, Zhao J (2019) Facile preparation of slag or fly ash geopolymer composite coatings with flame resistance. Constr Build Mater 203:655. https://doi.org/10.1016/j.conbuildmat.2019.01.097

    Article  CAS  Google Scholar 

  26. Kumar A, Malik G, Pandey MK, Chandra R, Mulik RS (2021) Corrosion behavior of pulse laser deposited 2D nanostructured coating prepared by self-made h-BN target in salinity environment. Ceram Int 47:12537. https://doi.org/10.1016/j.ceramint.2021.01.111

    Article  CAS  Google Scholar 

  27. Li F, Liu L, Yang Z, Li S (2021) Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). J Hazard Mater 401:123339

    Article  CAS  Google Scholar 

  28. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35:658

    Article  CAS  Google Scholar 

  29. Rajput A, Raj SK, Sharma J, Rathod NH, Maru P, Kulshrestha V (2021) Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water. Colloids Surf A Physicochem Eng Asp 614:126157

    Article  CAS  Google Scholar 

  30. Alehyen S, Achouri M, Taibi M (2017) Characterization, microstructure and properties of fly ash-based geopolymer. J Mater Environ Sci 8:1783

    CAS  Google Scholar 

  31. Lei W, Portehault D, Dimova R, Antonietti M (2011) Boron carbon nitride nanostructures from salt melts tunable water-soluble phosphors. J Am Chem Soc 133:7121. https://doi.org/10.1021/ja200838c

    Article  CAS  Google Scholar 

  32. Fan F, Liu Z, Xu G, Peng H, Cai CS (2018) Mechanical and thermal properties of fly ash based geopolymers. Constr Build Mater 160:66. https://doi.org/10.1016/j.conbuildmat.2017.11.023

    Article  CAS  Google Scholar 

  33. Wang N, Wang Q, Xu S, Qu L, Shi Z (2021) Robust superhydrophobic wood surfaces with mechanical durability. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.125624

    Article  Google Scholar 

  34. Zhu C, Guo Y, Wen Z et al (2021) IOP conference series: earth and environmental science. IOP Publishing, Bristol

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Key Scientific Research Project of Education Department of Hunan Province (22A0113), Major Science and Technology Projects of **angtan Science and Technology Bureau (GX-ZD202210011) and Undergraduate Innovation Foundation of **angtan University.

Author information

Authors and Affiliations

Authors

Contributions

PY: Methodology, Investigation, Writing-original draft; HC, WL, JW, XD and HQ: Methodology, Investigation; YD and ZC: Writing-review and editing, Project administration.

Corresponding author

Correspondence to Yanhuai Ding.

Ethics declarations

Conflict of interest

Authors state no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3700 kb)

Supplementary file2 (MP4 7192 kb)

Supplementary file3 (MP4 14660 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Cai, H., Liao, W. et al. Design and preparation of flame-resistant geopolymer coatings for timber. J Mater Sci 58, 13865–13874 (2023). https://doi.org/10.1007/s10853-023-08886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08886-6

Navigation