Log in

Novel Thermoset Nanocomposite Intumescent Coating Based on Hydroxyapatite Nanoplates for Fireproofing of Steel Structures

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Thermoset nanocomposite intumescent coating swells under the influence of heat forming a thick cohesive insulating barrier; it is one of the most effective ways for fire protection of steel structures. This study reports on the sustainable fabrication of hydroxyapatite (HA) nanoplates as an efficient phosphorous-based flame retardant agent (phosphorous content of 18.5 wt%). Epoxy nanocomposite, based on the synergism between HA particles and advanced intumescent flame retardant agent (commercially known as AP750) was developed. This novel nanocomposite was able to resist a direct flame source at 1700 °C and to self extinguish; it demonstrated an enhanced flammability performance in cone calorimetry with 51% decrease in the peak heat released. Nanocomposite layer of 3 mm thickness was employed for steel substrate protection against direct heat source. The developed intumescent coating was able to protect the steel substrate from heat source at 900 °C. It offered an improved performance, in terms of the coating’s mechanical barrier, and flame resistance properties. HA nanoplates could propose a gas phase effect due to the release of active flame scavengers such as \( {\text{PO}}_{2}^{ \cdot } \), PO·, and HPO·. Furthermore, HA could expose a condensed phase effect via the formation of a protective charr layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.B. Morgan, C.A. Wilkie (eds.), Flame Retardant Polymer Nanocomposites (Wiley, Hoboken, 2007)

    Google Scholar 

  2. M. Jimenez, S. Duquesne, S. Bourbigot, Multiscale experimental approach for develo** high-performance intumescent coatings. Ind. Eng. Chem. Res. 45(13), 4500–4508 (2006)

    CAS  Google Scholar 

  3. J. Kruppa, L. Twilet, J. Wesche, Fire protection of structural steel work, ed. by Communication of the European Communities (1998)

  4. C.A. Wilkie, A.B. Morgan, Fire Retardancy of Polymeric Materials (CRC Press, Boca Raton, 2010)

    Google Scholar 

  5. J. **ao, Y. Huang, C. Manke, Computational design of thermoset nanocomposite coatings: methodological study on coating development and testing. Chem. Eng. Sci. 65(2), 753–771 (2010)

    CAS  Google Scholar 

  6. M. Wladyka-Przybylak, R. Kozlowski, The thermal characteristics of different intumescent coatings. Fire Mater. 23(1), 33–43 (1999)

    CAS  Google Scholar 

  7. G. Marosi et al., Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polym. Degrad. Stab. 82(2), 379–385 (2003)

    CAS  Google Scholar 

  8. Z. Wang, E. Han, W. Ke, Fire-resistant effect of nanoclay on intumescent nanocomposite coatings. Appl. Polym. Sci. 103(3), 1681–1689 (2007)

    CAS  Google Scholar 

  9. British-Standard-Institute, Test Methods and Criteria for the Fire Resistance of Elements of Building Construction, in BS 476, Part 8 (British Standard Institute, London, 1972)

    Google Scholar 

  10. Underwriter-Laboratories, UL Rapid Rise Fire Tests of Protection Materials for Structural Steel, in UL 1709 (Underwriter-Laboratories, Northbrook, 1994)

    Google Scholar 

  11. HSE-Offshore-Technology, Jet Fire Resistance Test of Passive Fire Protection Materials, in OTI 95634 (HSE-Offshore-Technology, London, 1996)

    Google Scholar 

  12. B.K. Cirpici, Y.C. Wang, B. Rogers, Assessment of the thermal conductivity of intumescent coatings in fire. Fire Saf. J. 81, 74–84 (2016)

    CAS  Google Scholar 

  13. R.G. Puri, A.S. Khanna, Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Prog. Org. Coat. 92, 8–15 (2016)

    CAS  Google Scholar 

  14. Q.F. Gillani et al., Effect of dolomite clay on thermal performance and char morphology of expandable graphite based intumescent fire retardant coatings. Proc. Eng. 148, 146–150 (2016)

    CAS  Google Scholar 

  15. G. Camino, L. Costa, L. Trossarelli, Study of the mechanism of intumescence in fire retardant polymers: part II—mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 7(1), 25–31 (1984)

    CAS  Google Scholar 

  16. G. Camino, L. Costa, L. Trossarelli, Study of the mechanism of intumescence in fire retardant polymers: part V—mechanism of formation of gaseous products in the thermal degradation of ammonium polyphosphate. Polym. Degrad. Stab. 12(3), 203–211 (1985)

    CAS  Google Scholar 

  17. B.K. Kandola et al., The effect of intumescents on the burning behaviour of polyester-resin-containing composites. Compos. A Appl. Sci. Manuf. 33(6), 805–817 (2002)

    Google Scholar 

  18. M.L. Bras, G. Gamingo, Fire Retardancy of Polymers the Use of Intumescence (Royal Society, London, 1998)

    Google Scholar 

  19. O. Becker, G.P. Simon, Epoxy layered silicate nanocomposites. Adv. Polym. Sci. 179, 29–82 (2005)

    CAS  Google Scholar 

  20. S. Ullah et al., Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog. Org. Coat. 109, 70–82 (2017)

    CAS  Google Scholar 

  21. Y. Shi, G. Wang, An intumescent flame retardant containing caged bicyclic phosphate and oligomer: Synthesis, thermal properties and application in intumescent fire resistant coating. Prog. Org. Coat. 90, 83–90 (2016)

    CAS  Google Scholar 

  22. A.I. Arogundade et al., Investigating the synergistic effect of Bauxsol™ in an epoxy intumescent coating system. Procedia Eng. 148, 223–227 (2016)

    CAS  Google Scholar 

  23. Y. Shi, G. Wang, The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings. Prog. Org. Coat. 97, 1–9 (2016)

    CAS  Google Scholar 

  24. Y. Shi, G. Wang, The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating. Appl. Surf. Sci. 385, 453–463 (2016)

    CAS  Google Scholar 

  25. G.-Q. Li et al., Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity. Thin-Walled Struct. Part A 98, 177–184 (2016)

    Google Scholar 

  26. Z. Liu et al., Preparation and performances of novel waterborne intumescent fire retardant coatings. Prog. Org. Coat. 95, 100–106 (2016)

    CAS  Google Scholar 

  27. S. Ullah et al., The role of multi-wall carbon nanotubes in char strength of epoxy based intumescent fire retardant coating. J. Anal. Appl. Pyrol. 124, 149–160 (2017)

    CAS  Google Scholar 

  28. M. Zia-ul-Mustafa et al., Thermal and pyrolysis analysis of minerals reinforced intumescent fire retardant coating. Prog Organ. Coat. Part B 102, 201–216 (2017)

    CAS  Google Scholar 

  29. S.V. Levchik, E.D. Weil, A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 24(5), 345–364 (2006)

    CAS  Google Scholar 

  30. N. Rothon (ed.), Paticulate Filled Polymer Composites (Rapra Technology Ltd, Shawbury, 2003)

    Google Scholar 

  31. G. Camino, R. Delobel (eds.), Fire Retardany of Polymeric Materials (Marcel Dekker, New York, 2000)

    Google Scholar 

  32. Pinfa, Innovative flame retardants in E & E applications. Pinfa-Phosphorous, Inorganic and Nitrogen Flame Retardant Association (2010)

  33. J. Li, Engineering Nanoparticles in Near-Critical and Supercritical Water (University of Nottingham, Nottingham, 2008)

    Google Scholar 

  34. A.R. Horrocks, D. Price, Advances in Fire Retardant Materials (CRC Press, Boca Raton, 2008)

    Google Scholar 

  35. V. Babushok, W. Tsang, Inhibitor rankings for alkane combustion. Combust. Flame 123(4), 488–506 (2000)

    CAS  Google Scholar 

  36. F. Laoutid et al., New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R-Rep. 63(3), 100–125 (2009)

    Google Scholar 

  37. M. Wang, R. Joseph, W. Bonfield, Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials 19(24), 2357–2366 (1998)

    CAS  PubMed  Google Scholar 

  38. A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Adv. Coll. Interface. Sci. 249, 321–330 (2017)

    Google Scholar 

  39. J. Wang et al., Synthesis of silver–hydroxyapatite composite with improved antibacterial properties. Vacuum 152, 132–137 (2018)

    CAS  Google Scholar 

  40. J. Kozlowska et al., Preliminary in vitro and in vivo assessment of modified collagen/hydroxyapatite composite. Mater. Lett. 221, 74–76 (2018)

    CAS  Google Scholar 

  41. M. Gobara et al., Novel smart hydroxyapatite/silica sol-gel nanocomposite hybrid coating for corrosion protection of AA2024. J. Inorg. Organomet. Polym Mater. 28(4), 1598–1608 (2018)

    CAS  Google Scholar 

  42. S. Krukowski, N. Lysenko, W. Kolodziejski, Synthesis and characterization of nanocrystalline composites containing calcium hydroxyapatite and glycine. J. Solid State Chem. 264, 59–67 (2018)

    CAS  Google Scholar 

  43. S. Elbasuney, H.E. Mostafa, Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology 22, 82–88 (2015)

    CAS  Google Scholar 

  44. M. Zammarano et al., Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer 46(22), 9314–9328 (2005)

    CAS  Google Scholar 

  45. S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    CAS  Google Scholar 

  46. S. Elbasuney, A.F. El-Sherif, Instant detection and identification of concealed explosive-related compounds: induced Stokes Raman versus infrared. Forensic Sci. Int. 270, 83–90 (2017)

    CAS  PubMed  Google Scholar 

  47. S. Elbasuney, A.F. El-Sherif, Complete spectroscopic picture of concealed explosives: laser induced Raman versus infrared. TrAC Part B 85, 34–41 (2016)

    CAS  Google Scholar 

  48. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    CAS  Google Scholar 

  49. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    CAS  Google Scholar 

  50. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    CAS  Google Scholar 

  51. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    CAS  Google Scholar 

  52. K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. Adv. Drug Deliv. Rev. 60(3), 299–327 (2008)

    CAS  PubMed  Google Scholar 

  53. P. Savage et al., Reactions at supercritical conditions: applications and fundamentals. AIChE J. 41(7), 1723–1778 (1995)

    CAS  Google Scholar 

  54. H. Hobbs, Biocatalysis in ‘Green Solvents’, in Chemistry (University of Nottingham, Notttingham, 2006)

    Google Scholar 

  55. S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    CAS  Google Scholar 

  56. A. Williams (ed.), Combustion Theory (The Benjamin/Cummings Publishing Company, San Francisco, 1985)

    Google Scholar 

  57. S. Kareiva et al., Sol–gel synthesis, phase composition, morphological and structural characterization of Ca10(PO4)6(OH)2: XRD, FTIR, SEM, 3D SEM and solid-state NMR studies. J. Mol. Struct. 1119, 1–11 (2016)

    CAS  Google Scholar 

  58. J. Reyes-Gasga et al., XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater. Sci. Eng., C 33(8), 4568–4574 (2013)

    CAS  Google Scholar 

  59. N. Ohtsu et al., Chemical and crystallographic characterizations of hydroxyapatite- and octacalcium phosphate-coatings on magnesium synthesized by chemical solution deposition using XPS and XRD. Surf. Coat. Technol. 218, 114–118 (2013)

    CAS  Google Scholar 

  60. C.-C. Wu et al., FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J. Mol. Struct. 979(1–3), 72–76 (2010)

    CAS  Google Scholar 

  61. Y. Lie, W. Qianghua, Q. Baojun, Synergistic effects and mechanism of mutiwalled carbon nano tubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT. Polym. Degrad. Stab. 94, 751–756 (2009)

    Google Scholar 

  62. G. Li et al., Effects of EG and MoSi2 on thermal degradation of intumescent coating. Polym. Degrad. Stab. 92(4), 569–579 (2007)

    CAS  Google Scholar 

  63. J.-W. Gu et al., Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 201(18), 7835–7841 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

This experimental work has been conducted at School of Chemical engineering, University of Nottingham, Nottingham, UK, and funded by Military Technical College, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Maraden, A. Novel Thermoset Nanocomposite Intumescent Coating Based on Hydroxyapatite Nanoplates for Fireproofing of Steel Structures. J Inorg Organomet Polym 30, 820–830 (2020). https://doi.org/10.1007/s10904-019-01260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01260-7

Keywords

Navigation