Log in

Simultaneous detection of lead and cadmium based on N-doped MoS2/MWCNTs nanocomposites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heavy metal pollution in the environment has posed a serious threat to human health and ecosystems. Therefore, it is urgent to develop a fast and effective sensing method for detecting heavy metal ions (HMIs). A simple and rapid ultrasonic mixing method was used to prepare nanocomposites consisting of cysteine, multi-walled carbon nanotubes, and nitrogen-doped molybdenum disulfide (L-Cys/MWCNTs/N-MoS2). Fully combining the excellent features of 2D materials and carbon nanomaterials, the nanocomposites have been successfully used as sensor interface materials for the simultaneous detection of lead ions (Pb2+) and cadmium ions (Cd2+). The L-Cys/MWCNTs/N-MoS2@GCE sensor has a wide linear range for the detection of Pb2+ and Cd2+, with the detection limits as low as 0.67 nM and 5.3 nM, respectively. In addition, the sensor performs well in stability, reproducibility, and anti-interference performance. The L-Cys/MWCNTs/N-MoS2@GCE sensor can also be used for the detection of Pb2+ and Cd2+ in tap water and lake water with good recovery (> 90%), which may provide a promising strategy for the simultaneous in situ and sensitive detection of heavy metal ions in the aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  Google Scholar 

  2. Wu W, Jia M, Zhang Z, Chen X, Zhang Q, Zhang W, Li P, Chen L (2019) Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol Environ Saf 175:243–250

    Article  CAS  Google Scholar 

  3. Ahmad N, Sereshti H, Mousazadeh M, Nodeh HR, Kamboh MA, Mohamad S (2019) New magnetic silica-based hybrid organic-inorganic nanocomposite for the removal of lead(II) and nickel(II) ions from aqueous solutions. Mater Chem Phys 226:73–81

    Article  CAS  Google Scholar 

  4. Ding R, Krikstolaityte V, Lisak G (2019) Inorganic salt modified paper substrates utilized in paper based microfluidic sampling for potentiometric determination of heavy metals. Sens Actuators B Chem 290:347–356

    Article  CAS  Google Scholar 

  5. Ghasemi E, Heydari A, Sillanpaa M (2019) Central composite design for optimization of removal of trace amounts of toxic heavy metal ions from aqueous solution using magnetic Fe3O4 functionalized by guanidine acetic acid as an efficient nano-adsorbent. Microchem J 147:133–141

    Article  CAS  Google Scholar 

  6. Duru I, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51(13):6097–6116. https://doi.org/10.1007/s10853-016-9913-8

    Article  CAS  Google Scholar 

  7. Zhu G, Li Y, Zhang C-y (2014) Simultaneous detection of mercury(II) and silver(I) ions with picomolar sensitivity. Chem Commun 50(5):572–574

    Article  CAS  Google Scholar 

  8. Zhao Y, Yang X, Pan P, Liu J, Yang Z, Wei J, Xu W, Bao Q, Zhang H, Liao Z (2020) All-printed flexible electrochemical sensor based on polyaniline electronic ink for Copper(II), Lead(II) and Mercury(II) ion determination. J Electron Mater 49(11):6695–6705

    Article  CAS  Google Scholar 

  9. Lv HY, Teng ZY, Wang SC, Feng K, Wang XL, Wang CY, Wang GX (2018) Voltammetric simultaneous ion flux measurements platform for Cu2+, Pb2+ and Hg2+ near rice root surface: utilizing carbon nitride heterojunction film modified carbon fiber microelectrode. Sens Actuators B Chem 256:98–106

    Article  CAS  Google Scholar 

  10. Yan Z, Yuan H, Zhao Q, **ng L, Zheng X, Wang W, Zhao Y, Yu Y, Hu L, Yao W (2020) Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst 145(9):3173–3187

    Article  CAS  Google Scholar 

  11. Zhang Q, Du Q, Hua M, Jiao T, Gao F, Pan B (2013) Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. Environ Sci Technol 47(12):6536–6544

    Article  CAS  Google Scholar 

  12. Peng Q, Guo J, Zhang Q, **ang J, Liu B, Zhou A, Liu R, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136(11):4113–4116

    Article  CAS  Google Scholar 

  13. Deng W, Tan Y, Fang Z, ** voltammetry. Electroanalysis 21(22):2477–2485

    CAS  Google Scholar 

  14. Manjunatha JG, Deraman M, Basri NH, Talib IA (2018) Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid. Arab J Chem 11(2):149–158

    Article  CAS  Google Scholar 

  15. Raril C, Manjunatha JG (2020) Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. J Anal Sci Technol 11(1):3

    Article  Google Scholar 

  16. Asgharzadeh S, Shareghi B, Farhadian S, Tirgir F (2019) Effect of free L-cysteine on the structure and function of alpha-chymotrypsin. J Mol Liq 280:79–86

    Article  CAS  Google Scholar 

  17. Priya T, Dhanalakshmi N, Thennarasu S, Thinakaran N (2018) A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/kappa-carrageenan/L-cysteine nanocomposite. Carbohyd Polym 182:199–206

    Article  CAS  Google Scholar 

  18. Zhou S-F, Wang J-J, Gan L, Han X-J, Fan H-L, Mei L-Y, Huang J, Liu Y-Q (2017) Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. J Alloy Compd 721:492–500

    Article  CAS  Google Scholar 

  19. Muralikrishna S, Sureshkumar K, Varley TS, Nagaraju DH, Ramakrishnappa T (2014) In situ reduction and functionalization of graphene oxide with L-cysteine for simultaneous electrochemical determination of cadmium(II), lead(II), copper(II), and mercury(II) ions. Anal Methods 6(21):8698–8705

    Article  CAS  Google Scholar 

  20. Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D (2019) Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes Pigm 170:107591

    Article  CAS  Google Scholar 

  21. Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke MV (2017) Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B Adv Funct Solid-State Mater 223:24–34

    Article  CAS  Google Scholar 

  22. Meng F-Y, Wu H, Qiao M, Zeng X-F, Wang D, Wang J-X (2022) N-doped MoS2 nanoflowers for efficient Cr (VI) removal. Langmuir 38(4):1567–1577

    Article  CAS  Google Scholar 

  23. Tian X, Wu J, Li Q, Li Y, Chen Z, Tang Y, Li Y (2018) Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. J Mater Sci 53(10):7258–7265. https://doi.org/10.1007/s10853-018-2053-6

    Article  CAS  Google Scholar 

  24. Liu Y, Ma C, Zhang X, Ngo HH, Guo W, Zhang M, Zhang D (2021) Role of structural characteristics of MoS2 nanosheets on Pb2+ removal in aqueous solution. Environ Technol Innov 22:101385

    Article  CAS  Google Scholar 

  25. Li W, Kan X, Zeng T, Li S, Cheng R, Zhou M, Hou H (2022) MoS2/Bentonite prepared by a facile method for efficient removal of Cd2+ from aqueous solution. J Alloy Compd 907:164508

    Article  CAS  Google Scholar 

  26. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, ** S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277

    Article  CAS  Google Scholar 

  27. Zhou X, Wan L-J, Guo Y-G (2012) Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 4(19):5868–5871

    Article  CAS  Google Scholar 

  28. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49(18):1823–1825

    Article  CAS  Google Scholar 

  29. Gong Y, Yang S, Zhan L, Ma L, Vajtai R, Ajayan PM (2014) A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Func Mater 24(1):125–130

    Article  CAS  Google Scholar 

  30. Gupta P, Rahm CE, Jiang D, Gupta VK, Heineman WR, Justin G, Alvarez NT (2021) Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes. Anal Chim Acta 1155:338353

    Article  CAS  Google Scholar 

  31. Nguyen MB, Dau Thi Ngoc N, Vu Thi T, Piro B, Thuan Nguyen Pham T, Pham Thi Hai Y, Le GH, Le Quoc H, Vu TA, Vu Thi Thu H (2021) Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions. J Mater Sci 56(13):8172–8185. https://doi.org/10.1007/s10853-021-05815-3

    Article  CAS  Google Scholar 

  32. Liu J, Li X, Gong X, Qing T, Zhang P, Feng B (2018) Label-free fluorescent detection of Hg2+ in aqueous media based on N-doped MoS2 nanosheets. NANO 13(5):133–141

    Article  Google Scholar 

  33. Dong L, Li Q, Liao Q, Sun C, Li X, Zhao Q, Shen R, Zhao B, Asiri AM, Marwani HM, Wu X, Hu B (2019) Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media. Sep Sci Technol 54(6):847–859

    Article  CAS  Google Scholar 

  34. Li M, Xu Z, Chen J, Zhu S-E (2018) Covalent functionalization of multiwalled carbon nanotubes with super-hydrophobic property. J Polym Eng 38(6):537–543

    Article  CAS  Google Scholar 

  35. Zhou W, Hou D, Sang Y, Yao S, Zhou J, Li G, Li L, Liu H, Chen S (2014) MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J Mater Chem A 2(29):11358–11364

    Article  CAS  Google Scholar 

  36. Inumaru K, Baba K, Yamanaka S (2006) Preparation of superconducting molybdenum nitride MoN, (0.5 <= x <= 1) films with controlled composition. Physica B Condensed Matter 383(1): 84–85

  37. Secchi V, Franchi S, Santi M, Dettin M, Zamuner A, Iucci G, Battocchio C (2018) Self-assembling behavior of cysteine-modified oligopeptides: an XPS and NEXAFS study. J Phys Chem C 122(11):6236–6239

    Article  CAS  Google Scholar 

  38. Yi W, Li Z, Dong C, Li H-W, Li J (2019) Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem J 148:774–783

    Article  CAS  Google Scholar 

  39. Zhang D, Wu Z, Li P, Zong X, Dong G, Zhang Y (2018) Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens Actuators B Chem 258:895–905

    Article  CAS  Google Scholar 

  40. Wang X, Yang M, Liu Q, Yang S, Geng X, Yang Y, Fa H, Wang Y, Hou C (2019) An ultrasensitive electrochemical DNA biosensor based on carboxylated multi-walled carbon nanotube/molybdenum disulfide composites for KRAS gene detection. Anal Sci 35(4):441–448

    Article  CAS  Google Scholar 

  41. **a X, Zheng Z, Zhang Y, Zhao X, Wang C (2014) Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators, B Chem 192:42–50

    Article  CAS  Google Scholar 

  42. Bai X, Xu Z, Zhang Q, Li S, Dai Y, Cui X, Yoon HH, Yao L, Jiang H, Du M, Zhang Y, Kauppinen EI, Sun Z (2022) Molybdenum disulfide/double-wall carbon nanotube mixed-dimensional heterostructures. Adv Mater Interfaces 9(13):2200193

    Article  CAS  Google Scholar 

  43. Priya T, Dhanalakshmi N, Thennarasu S, Thinakaran N (2018) A novel voltammetric sensor for the simultaneous detection of Cd2+ and Pb2+ using graphene oxide/κ-carrageenan/l-cysteine nanocomposite. Carbohyd Polym 182:199–206

    Article  CAS  Google Scholar 

  44. Akhtar M, Tahir A, Zulfiqar S, Hanif F, Warsi MF, Agboola PO, Shakir I (2020) Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth Met 265:116410

    Article  CAS  Google Scholar 

  45. Fu L, Li X, Yu J, Ye J (2013) Facile and simultaneous strip** determination of zinc, cadmium and lead on disposable multiwalled carbon nanotubes modified screen-printed electrode. Electroanalysis 25(2):567–572

    Article  CAS  Google Scholar 

  46. Gan X, Zhao H, Wong K-Y, Lei DY, Zhang Y, Quan X (2018) Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd(II) detection. Talanta 182:38–48

    Article  CAS  Google Scholar 

  47. Lu Z, Dai W, Lin X, Liu B, Zhang J, Ye J, Ye J (2018) Facile one-step fabrication of a novel 3D honeycomb-like bismuth nanoparticles decorated N-doped carbon nanosheet frameworks: Ultrasensitive electrochemical sensing of heavy metal ions. Electrochim Acta 266:94–102

    Article  CAS  Google Scholar 

  48. Anandhakumar S, Mathiyarasu J, Phani KLN (2012) In situ bismuth film modified carbon fiber microelectrode for nanomolar detection of cadmium and lead. Indian J Chem Sect Inorg Bio-Inorg Phys Theoret Anal Chem 51(5):699–703

    Google Scholar 

  49. Pu Y, Wu Y, Yu Z, Lu L, Wang X (2021) Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites. Talanta Open 3:100024

    Article  Google Scholar 

  50. Guo C, Wang C, Sun H, Dai D, Gao H (2021) A simple electrochemical sensor based on rGO/MoS2/CS modified GCE for highly sensitive detection of Pb(II) in tobacco leaves. RSC Adv 11(47):29590–29597

    Article  CAS  Google Scholar 

  51. Song Y, Bian C, Tong J, Li Y, ** voltammetry detection of trace levels of cadmium. Micromachines 7(6):103

    Article  Google Scholar 

  52. Pizarro J, Segura R, Tapia D, Navarro F, Fuenzalida F, Jesus Aguirre M (2020) Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic strip** voltammetry in bivalve mollusks. Food Chem 321:126682

    Article  CAS  Google Scholar 

  53. Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    Article  CAS  Google Scholar 

  54. Zhou J, Wang Q, Liu F, **ong S (2021) Electroanalysis of Cd2+ and Pb2+ based on Bi/Fe3O4/RTIL electrode. Electrocatalysis 12(4):381–389

    Article  CAS  Google Scholar 

  55. Fort CI, Cotet LC, Vulpoi A, Turdean GL, Danciu V, Baia L, Popescu IC (2015) Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II) and Cd(II). Sens Actuat B Chem 220:712–719

    Article  CAS  Google Scholar 

  56. Guo X, Li Y, Huang H, Wang D, Cui R, Li J, Zhao Y, Wang D, Yuan H, Dong J, Sun B (2022) Triazine-graphdiyne with well-defined two kinds of active sites for simultaneous detection of Pb2+ and Cd2+. J Environ Chem Eng 10(2):107159

    Article  CAS  Google Scholar 

  57. Bakhsh EM, Khan SB, Asiri AM, Shah A (2021) Zn/Fe nanocomposite based efficient electrochemical sensor for the simultaneous detection of metal ions. Physica E Low Dimen Syst Nanostruct 130:114671

    Article  CAS  Google Scholar 

  58. Yang D, Wang L, Chen Z, Megharaj M, Naidu R (2014) Anodic strip** voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim Acta 181(11–12):1199–1206

    Article  CAS  Google Scholar 

  59. Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54

    Article  CAS  Google Scholar 

  60. Shi H, Zhu F, Zhou X, Li H, Yang F, Zhang X, Liu J (2019) Large scale fabrication of disposable carbon cloth electrochemical sensors for simultaneous determination of heavy metal ion. J Electroanal Chem 840:328–337

    Article  CAS  Google Scholar 

  61. Hwang J-H, Wang X, Zhao D, Rex MM, Cho HJ, Lee WH (2019) A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim Acta 298:440–448

    Article  CAS  Google Scholar 

  62. ** voltammetric determination of Pb(II). RSC Adv 5(94):77159–77167

    Article  CAS  Google Scholar 

  63. **ao X-Y, Chen S-H, Li S-S, Wang J, Zhou W-Y, Huang X-J (2019) Synergistic catalysis of N vacancies and similar to 5 nm Au nanoparticles promoted the highly sensitive electrochemical determination of lead(II) using an Au/N-deficient-C3N4 nanocomposite. Environ Sci Nano 6(6):1895–1908

    Article  CAS  Google Scholar 

  64. Li Y, Huang H, Cui R, Wang D, Yin Z, Wang D, Zheng L, Zhang J, Zhao Y, Yuan H, Dong J, Guo X, Sun B (2021) Electrochemical sensor based on graphdiyne is effectively used to determine Cd2+ and Pb2+ in water. Sens Actuat B Chem 332:129519

    Article  CAS  Google Scholar 

  65. Li Y, Cui R, Huang H, Dong J, Liu B, Zhao D, Wang J, Wang D, Yuan H, Guo X, Sun B (2020) High performance determination of Pb2+ in water by 2,4-dithiobiuret-reduced graphene oxide composite with wide linear range and low detection limit. Anal Chim Acta 1125:76–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the support of the National Natural Science Foundation of China (No. 61904049), 14th Five-Year Plan National Key R&D Project (2021YFD1700904-04) and the Top Talent Program of Henan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixin Li or Lanlan Li.

Ethics declarations

Conflicts of interest

To the best of our knowledge, the named authors have no conflflict of interest, financial, or otherwise.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, Y., Zhang, Y. et al. Simultaneous detection of lead and cadmium based on N-doped MoS2/MWCNTs nanocomposites. J Mater Sci 58, 6643–6655 (2023). https://doi.org/10.1007/s10853-023-08424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08424-4

Navigation