Log in

Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is essential to develop new nanomaterials able to improve sensing performance of electrochemical sensors for determination of heavy metal pollutants. In this work, a novel nanoscale metal–organic-framework material (Yb-MOF) with Ytterbium (Yb) rare-earth metal core and benzenetricarboxylic (BTC) ligands was prepared in aqueous conditions using hydrothermal approach. The results have revealed highly porous structure of the as-synthesized material with specific active area up to 1166 m2 g−1. A sensing platform was then constructed by drop-casting Yb-MOF onto glassy carbon electrode for detection of two most commonly found heavy metal ion pollutants (Cd2+ and Pb2+) in water sources. The nanoporous structure of Yb-MOF is very profitable to the selective preconcentration of targeted metal ions. The detection limits were estimated to be 3.0 ppb, 1.6 ppb for Cd2+ and Pb2+ species, respectively. This work provides a new electrochemical sensing platform for fast and sensitive in-situ detection of water contaminants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Riman D, Jirovsky D, Hrbac J, Prodromidis M (2014) Green and facile electrode modification by spark discharge: bismuth oxide-screen printed electrodes for the screening of ultra-trace Cd(II) and Pb(II). Electrochem Commun 50:20–23

    Article  Google Scholar 

  2. Giao NQ, Dang VH, Yen PTH, Phong PH, Ha VTT, Duy PK, Chung H (2019) Au nanodendrite incorporated graphite pencil lead as a sensitive and simple electrochemical sensor for simultaneous detection of Pb(II), Cu(II) and Hg(II). J Appl Electrochem 49(8):839–846

    Article  CAS  Google Scholar 

  3. Lee S, Bong S, Ha J, Kwak M, Park S-K, Piao Y (2015) Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic strip** voltammetric determination of trace heavy metals. Sens Actuat B 215:62–69

    Article  CAS  Google Scholar 

  4. Zhao G, Liu G (2019) Synthesis of a three-dimensional (BiO)2CO3@single-walled carbon nanotube nanocomposite and its application for ultrasensitive detection of trace Pb(II) and Cd(II) by incorporating Nafion. Sens Actuat B 288:71–79

    Article  CAS  Google Scholar 

  5. Yu L, Zhang Q, Yang B, Xu Q, Xu Q, Hu X (2018) Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+. Sens Actuat B 259:540–551

    Article  CAS  Google Scholar 

  6. Wang Y, Wu Y, **e J, Hu X (2013) Metal–organic framework modified carbon paste electrode for lead sensor. Sens Actuat B 177:1161–1166

    Article  CAS  Google Scholar 

  7. Guo H, Zheng Z, Zhang Y, Lin H, Xu Q (2017) Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction. Sens Actuat B 248:430–436

    Article  CAS  Google Scholar 

  8. Li Y, **a T, Zhang J, Cui Y, Li B, Yang Y, Qian G (2019) A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. J Solid State Chem 275:38–42

    Article  CAS  Google Scholar 

  9. Sanati S, Abazari R, Morsali A, Kirillov AM, Junk PC, Wang J (2019) An asymmetric supercapacitor based in a non-calcined 3D pillared cobalt (II) metal-organic framework with long cylic stability. Inorg Chem 58:16100–16111

    Article  CAS  Google Scholar 

  10. Sanati S, Abazari R, Morsali A (2020) Enhanced electrochemical oxygen and hydrogen evolution using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte. Chem Commun 56:6652–6655

    Article  CAS  Google Scholar 

  11. Abazari R, Morsali A, Dubai DP (2020) An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@Ni-Ti LDH: mechanistic insight and toxicity assessment. Inorg Chem Front 7:2287–2304

    Article  CAS  Google Scholar 

  12. Roushani M, Valipour A, Saedi Z (2016) Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sens Actuat B 233:419–425

    Article  CAS  Google Scholar 

  13. Wang Y, Wang L, Huang W, Zhang T, Hu X, Perman JA, Ma S (2017) A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5(18):8385–8393

    Article  CAS  Google Scholar 

  14. Wang X, Qi Y, Shen Y, Yuan Y, Zhang L, Zhang C, Sun Y (2020) A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens Actuat B 310:127756

    Article  CAS  Google Scholar 

  15. Ye W, Li Y, Wang J, Li B, Cui Y, Yang Y, Qian G (2020) Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. J Solid State Chem 281:121032

    Article  CAS  Google Scholar 

  16. Jiang H-L, Tsumori N, Xu Q (2010) A series of (6,6)-connected porous lanthanide−organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Inorg Chem 49(21):10001–10006

    Article  CAS  Google Scholar 

  17. Jamali A, Tehrani AA, Shemirani F, Morsali A (2016) Lanthanide metal–organic frameworks as selective microporous materials for adsorption of heavy metal ions. Dalton Trans 45(22):9193–9200

    Article  CAS  Google Scholar 

  18. Burnett DL, Oozeerally R, Pertiwi R, Chamberlain TW, Cherkasov N, Clarkson GJ, Krisnandi YK, Degirmenci V, Walton RI (2019) A hydrothermally stable ytterbium metal-organic framework as a bifunctional solid-acid catalyst for glucose conversion. Chem Commun 55:11446–11449

    Article  CAS  Google Scholar 

  19. Gustafsson M, Bartoszewicz A, Martín-Matute B, Sun J, Grins J, Zhao T, Li Z, Zhu G, Zou X (2010) A family of highly stable lanthanide metal−organic frameworks: structural evolution and catalytic activity. Chem Mater 22(11):3316–3322

    Article  CAS  Google Scholar 

  20. Andrius L, Aldona B, Aivaras K (2018) On the synthesis and chracterization of lanthanide metal organic framework. Ceramics 1:54–64

    Article  Google Scholar 

  21. Dau TNN, Vu VH, Cao TT, Nguyen VC, Ly CT, Tran DL, Pham TTN, Loc NT, Piro B, Vu TT (2019) In-situ electrochemically deposited Fe3O4 nanoparticles onto graphene nanosheets as amperometric amplifier for electrochemical biosensing applications. Sens Actuact B Chem 283:52–60

    Article  CAS  Google Scholar 

  22. Sun Y, Ma M, Tang B, Li S, Jiang L, Sun X, Que M, Tao C, Wu Z (2019) Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases. J Alloys Compd 808:151721

    Article  CAS  Google Scholar 

  23. Torres N, Galicia J, Plasencia Y, Cano A, Echevarría F, Desdin-Garcia LF, Reguera E (2018) Implications of structural differences between Cu-BTC and Fe-BTC on their hydrogen storage capacity. Colloids Surf A 549:138–146

    Article  CAS  Google Scholar 

  24. Teterin YA, Teterin AYu (2002) Structure of X-ray photoelectron spectra of lanthanide compounds. Russ Chem Rev 71(5):347–381

    Article  CAS  Google Scholar 

  25. Xu X, Clarke C, Ma C, Casillas G, Das M, Guan M, Liu D, Wang L, Tadich A, Du Y, Ton-That C, ** D (2017) Depth-profiling of Yb3+ sensitizer ions in NaYF4 upconversion nanoparticles. Nanoscale 9(23):7719–7726

    Article  CAS  Google Scholar 

  26. Kumar KN, Vijayalakshmi L, Choi J (2019) Investigation of upconversion photoluminescence of Yb3+/Er3+:NaLaMgWO6 noncytotoxic double-perovskite nanophosphors. Inorg Chem 58(3):2001–2011

    Article  CAS  Google Scholar 

  27. Gong G, Song Y, Tan H, **e S, Zhang C, Xu L, Xu J, Zheng J (2019) Design of core/active-shell NaYF4:Ln3+@NaYF4:Yb3+ nanophosphors with enhanced red-green-blue upconversion luminescence for anti-counterfeiting printing. Compos Part B-Eng 179:107504

    Article  CAS  Google Scholar 

  28. Ramasamy P, Chandra P, Rhee SW, Kim J (2013) Enhanced upconversion luminescence in NaGdF4:Yb, Er nanocrystals by Fe3+ do** and their application in bioimaging. Nanoscale 5(18):8711–8717

    Article  CAS  Google Scholar 

  29. Wu F, Su H, Zhu X, Wang K, Zhang Z, Wong W-K (2016) Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. J Mater Chem B 4(38):6366–6372

    Article  CAS  Google Scholar 

  30. Wang L, He J, Chen X, Lv Y (2020) A lanthanide MOF catalyst with an excellent thermal stability for the synthesis of polycarbonate diol. J Iran Chem Soc 17:2335–2343

    Article  CAS  Google Scholar 

  31. Wu Y, Qiu L-G, Wang W, Li Z-Q, Xu T, Wu Z-Y, Jiang X (2009) Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal-organic frameworks M3(BTC)2 [M = copper(II), cobalt(II), or nickel(II); BTC = benzene-1,3,5-tricarboxylate] using molecular oxygen. Transit Met Chem 34(3):263–268

    Article  CAS  Google Scholar 

  32. Oveisi AR, Khorramabadi-zad A, Daliran S (2016) Iron-based metal–organic framework, Fe(BTC): an effective dual-functional catalyst for oxidative cyclization of bisnaphthols and tandem synthesis of quinazolin-4(3H)-ones. RSC Adv 6(2):1136–1142

    Article  CAS  Google Scholar 

  33. Pérez VG, Jiménez M, Blanco R, Sanchez-Sanchez M (2017) Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catal Today 304:119–126

    Google Scholar 

  34. Yadav RS, Kumar D, Singh AK, Rai E, Rai SB (2018) Effect of Bi3+ ion on upconversion-based induced optical heating and temperature sensing characteristics in the Er3+/Yb3+ co-doped La2O3 nano-phosphor. RSC Adv 8(60):34699–34711

    Article  CAS  Google Scholar 

  35. Naderi HR, Ganjali MR, Dezfuli AS, Norouzi P (2016) Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adv 6(56):51211–51220

    Article  CAS  Google Scholar 

  36. da Luz LL, Lucena Viana BF, da Silva GCO, Gatto CC, Fontes AM, Malta M, Weber IT, Rodrigues MO, Júnior SA (2014) Controlling the energy transfer in lanthanide–organic frameworks for the production of white-light emitting materials. CrystEngComm 16(30):6914–6918

    Article  Google Scholar 

  37. Donohue MD, Aranovich GL (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci 76–77:137–152

    Article  Google Scholar 

  38. Dong S, Suo G, Li N, Chen Z, Peng L, Fu Y, Yang Q, Huang T (2016) A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sens Actuat B 222:972–979

    Article  CAS  Google Scholar 

  39. Gumpu MB, Veerapandian M, Krishnan UM, Rayappan JB (2017) Simultaneous electrochemical detection of Cd(II), Pb(II), As(III) and Hg(II) ions using ruthenium(II)-textured graphene oxide nanocomposite. Talanta 162:574–582

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.06-2016.25. The authors are very grateful to our colleagues at University of Diderot for their supports on XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vu Thi Thu or Vu Thi Thu Ha.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.B., Nga, D.T.N., Thu, V.T. et al. Novel nanoscale Yb-MOF used as highly efficient electrode for simultaneous detection of heavy metal ions. J Mater Sci 56, 8172–8185 (2021). https://doi.org/10.1007/s10853-021-05815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05815-3

Navigation