Log in

Recent progress in the synthesis of silver nanowires and their role as conducting materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synthesis of silver nanowires got much attention of researchers due to their promising applications in various fields of nanoelectronic devices. Many research articles focusing on silver nanowires synthesis have been reported since past decade. A number of techniques have been applied for successful synthesis of silver nanowires. Solution-based polyol process was proved as a dominant approach to the fabrication of silver nanowires with homogeneity and high aspect ratio. Various inorganic salts have been used in solution-based polyol synthesis of silver nanowires which play a key role in controlling the final morphology of silver nanowires and lead to uniform growth of silver nanowires. The different experimental parameters have been studied, which directly influence the final morphology of silver nanowires. The research on the development of an efficient synthesis approach of silver nanowires is still in progress to accomplish the need of advanced technology for controlled morphology and highest aspect ratio of silver nanowires. Moreover, the unique applications of silver nanowires in conducting polymers composites were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with the permission of Ref. [20]

Figure 2

Reprinted with the permission of Ref. [20]

Figure 3

Reprinted with the permission of Ref. [26]

Figure 4

Reprinted with the permission of Ref. [30]

Figure 5

Reprinted with the permission of Ref. [37]

Figure 6

Reprinted with the permission of Ref. [23]

Figure 7

Reprinted with the permission of Ref. [39]

Figure 8

Reprinted with the permission of Ref. [48]

Scheme 1
Figure 9

Reprinted with the permission of Ref. [61]

Figure 10

Reprinted with the permission of Ref. [65]

Figure 11

Reprinted with the permission of Ref. [65]

Figure 12

Reprinted with the permission of Ref. [70]

Figure 13

Reprinted with the permission of Ref. [70]

Figure 14

Reprinted with the permission of Ref. [74]

Figure 15

Reprinted with the permission of Ref. [74]

Scheme 2
Figure 16

Reprinted with the permission of Ref. [56]

Figure 17

Reprinted with the permission of Ref. [88]

Scheme 3
Figure 18

Reprinted with the permission of Ref. [57]

Figure 19

Reprinted with the permission of Ref. [92]

Figure 20

Reprinted with the permission of Ref. [92]

Figure 21

Reprinted with the permission of Ref. [99]

Figure 22

Reprinted with the permission of Ref. [92]

Figure 23

Reprinted with the permission of Ref. [100]

Figure 24

Reprinted with the permission of Ref. [101]

Figure 25

Reprinted with the permission of Ref. [100]

Figure 26

Reprinted with the permission of Ref. [100]

Figure 27

Reprinted with the permission of Ref. [117]

Figure 28

Reprinted with the permission of Ref. [116]

Figure 29

Reprinted with the permission of Ref. [119]

Figure 30

Reprinted with the permission of Ref. [120]

Figure 31

Reprinted with the permission of Ref. [122]

Figure 32

Reprinted with the permission of Ref. [124]

Figure 33

Reprinted with the permission of Ref. [134]

Similar content being viewed by others

References

  1. Kim YS, Chang MH, Lee EJ, Ihm DW, Kim JY (2014) Improved electrical conductivity of PEDOT-based electrode films hybridized with silver nanowires. Synth Met 195:69–74

    CAS  Google Scholar 

  2. Chen C, Wang L, Li R, Jiang G, Yu H, Chen T (2007) Effect of silver nanowires on electrical conductance of system composed of silver particles. J Mater Sci 42(9):3172–3176. https://doi.org/10.1007/s10853-007-1594-x

    Article  CAS  Google Scholar 

  3. Iwamoto Y, Yoshioka A, Naito T, Cuya J, Ido Y, Okawa R, Jeyadevan B, Yamaguchi H (2016) Field induced anisotropic thermal conductivity of silver nanowire dispersed-magnetic functional fluid. Exp Therm Fluid Sci 79:111–117

    CAS  Google Scholar 

  4. Kobler A, Beuth T, Klöffel T, Prang R, Moosmann M, Scherer T, Walheim S, Hahn H, Kübel C, Meyer B, Schimmel T, Bitzek E (2015) Nanotwinned silver nanowires: structure and mechanical properties. Acta Mater 92:299–308

    CAS  Google Scholar 

  5. Park M, Sohn Y, Shin WG, Lee J, Ko SH (2015) Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties. Ultrason Sonochem 22:35–40

    CAS  Google Scholar 

  6. Sun Y (2010) Silver nanowires unique templates for functional nanostructures. Nanoscale 2(9):1626–1642

    CAS  Google Scholar 

  7. De Barros RA, de Azevedo WM (2010) Solvent co-assisted ultrasound technique for the preparation of silver nanowire/polyaniline composite. Synth Met 160(13–14):1387–1391

    Google Scholar 

  8. Yu Y-H, Ma C-CM, Teng C-C, Huang Y-L, Lee S-H, Wang I, Wei M-H (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2–3):334–340

    CAS  Google Scholar 

  9. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang PD (2004) Nanoribbon waveguides for subwavelength photonics integration. Science 305(5688):1269–1273

    CAS  Google Scholar 

  10. Law M, Kind H, Messer B, Kim F, Yang PD (2002) Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Edit 41(13):2405–2408

    CAS  Google Scholar 

  11. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245

    CAS  Google Scholar 

  12. Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2(10):668–671

    CAS  Google Scholar 

  13. Garnett EC, Cai W, Cha JJ, Mahmood F, Connor ST, Greyson Christoforo M, Cui Y, McGehee MD, Brongersma ML (2012) Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11(3):241–249

    CAS  Google Scholar 

  14. Wang C, Cheng B, Zhang H, Wan P, Luo L, Kuang Y, Sun X (2016) Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Res 9(5):1532–1542

    CAS  Google Scholar 

  15. Eaton SW, Fu A, Wong AB, Ning CZ, Yang PD (2016) Semiconductor nanowire lasers. Nat Rev Mater 1(6):16028

    CAS  Google Scholar 

  16. Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato JP (2013) Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 24(45):20

    Google Scholar 

  17. Yan GQ, Wang L, Zhang L (2010) Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and pt nanotubes from resultant silver nanowires and their application in conductive adhesive. Rev Adv Mater Sci 24(1–2):10–25

    CAS  Google Scholar 

  18. Da Silva RR, Yang MX, Choi SI, Chi MF, Luo M, Zhang C, Li ZY, Camargo PHC, Ribeiro SJL, **a YN (2016) Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10(8):7892–7900

    Google Scholar 

  19. Jiu JT, Sugahara T, Nogi M, Suganuma K (2013) Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes. J Nanopart Res 15(4):13

    Google Scholar 

  20. Liu LL, He CD, Li J, Guo JB, Yang D, Wei J (2013) Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New J Chem 37(7):2179–2185

    CAS  Google Scholar 

  21. Xu J, Hu J, Peng CJ, Liu HL, Hu Y (2006) A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J Colloid Interface Sci 298(2):689–693

    CAS  Google Scholar 

  22. Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization and tested for antibacterial outcome. J Phys Chem C 111(36):13393–13397

    Google Scholar 

  23. Berchmans S, Nirmal RG, Prabaharan G, Madhu S, Yegnaraman V (2006) Templated synthesis of silver nanowires based on the layer-by-layer assembly of silver with dithiodipropionic acid molecules as spacers. J Colloid Interface Sci 303(2):604–610

    CAS  Google Scholar 

  24. Nguyen NT, Liu JH (2015) Wet chemical synthesis of silver nanowires based on a soft template of cholesteryl pyridine carbamate organogel. Sci Adv Mater 7(7):1282–1290

    CAS  Google Scholar 

  25. Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater 11(10):850

    CAS  Google Scholar 

  26. Wang ZH, Liu JW, Chen XY, Wan JX, Qian YT (2005) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J 11(1):160–163

    Google Scholar 

  27. Chen HT, Tung HT, Song JM, Chen IG, Lee HY (2011) A study of the nucleation and growth of silver nanowires on titanium dioxide. In: 2011 11th IEEE conference on nanotechnology, 15–18 Aug 2011, pp 1080–1083

  28. Eisele DM, Knoester J, Kirstein S, Rabe JP, Vanden Bout DA (2009) Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nat Nanotechnol 4(10):658–663

    CAS  Google Scholar 

  29. Von Berlepsch H, Kirstein S, Hania R, Pugžlys A, Böttcher C (2007) Modification of the nanoscale structure of the j-aggregate of a sulfonate-substituted amphiphilic carbocyanine dye through incorporation of surface-active additives. J Phys Chem B 111(7):1701–1711

    Google Scholar 

  30. Eisele DM, Hv B, Böttcher C, Stevenson KJ, Vanden Bout DA, Kirstein S, Rabe JP (2010) Photoinitiated growth of sub-7 nm silver nanowires within a chemically active organic nanotubular template. J Am Chem Soc 132(7):2104–2105

    CAS  Google Scholar 

  31. Lin YH, Chen KT, Ho JR (2011) Rapid fabrication of silver nanowires through photoreduction of silver nitrate from an anodic-aluminum-oxide template. Jpn J Appl Phys 50(6):065002

    Google Scholar 

  32. Ilie A, Crampin S, Karlsson L, Wilson M (2012) Repair and stabilization in confined nanoscale systems - inorganic nanowires within single-walled carbon nanotubes. Nano Res 5(12):833–844

    CAS  Google Scholar 

  33. Ahn KW, Lim JY, Yang JH, Kim SG (2010) In situ growth of silver nanoparticles in mesoporous silica by spray pyrolysis. J Nanopart Res 12(7):2457–2465

    CAS  Google Scholar 

  34. Sun XY, Xu FQ, Li ZM, Zhang WH (2005) Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template. Mater Chem Phys 90(1):69–72

    CAS  Google Scholar 

  35. Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111(6):3736–3827

    CAS  Google Scholar 

  36. Kim TY, Kim WJ, Hong SH, Kim JE, Suh KS (2009) Ionic-liquid-assisted formation of silver nanowires. Angew Chem Int Edit 48(21):3806–3809

    CAS  Google Scholar 

  37. **ang XZ, Gong WY, Kuang MS, Wang L (2016) Progress in application and preparation of silver nanowires. Rare Met 35(4):289–298

    CAS  Google Scholar 

  38. Ju WG, Zhang XH, Wu SK (2005) Wet chemical synthesis of Ag nanowires array at room temperature. Chem Lett 34(4):510–511

    CAS  Google Scholar 

  39. Chen M, Wang CJ, Wei XJ, Diao GW (2013) Rapid synthesis of silver nanowires and network structures under cuprous oxide nanospheres and application in surface-enhanced Raman scattering. J Phys Chem C 117(26):13593–13601

    CAS  Google Scholar 

  40. Thapa DK, Pandey A (2016) Cloning nanocrystal morphology with soft templates. Chem Phys Lett 658:315–318

    CAS  Google Scholar 

  41. Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669

    CAS  Google Scholar 

  42. Zhang W, Zhang W, Qiao X, Qiu X, Chen Q, Cai Y (2014) Controllable preparation of silver nanostructures and the effects of acidity-basicity of the reaction system. Sci Adv Mater 6(2):304–311

    CAS  Google Scholar 

  43. Fu HT, Yang XH, Yu AB, Jiang XC (2013) Rapid synthesis and growth of silver nanowires induced by vanadium trioxide particles. Particuology 11(4):428–440

    CAS  Google Scholar 

  44. Zhang DB, Qi LM, Yang JH, Ma JM, Cheng HM, Huang L (2004) Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem Mater 16(5):872–876

    CAS  Google Scholar 

  45. Yang B, Kamiya S, Shimizu Y, Koshizaki N, Shimizu T (2004) Glycolipid nanotube hollow cylinders as substrates: fabrication of one-dimensional metallic−organic nanocomposites and metal nanowires. Chem Mater 16(14):2826–2831

    CAS  Google Scholar 

  46. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32:198–205

    Google Scholar 

  47. Zhu Q, Zhang Z, Sun Z, Cai B, Cai W (2016) Importance of cations and anions from control agents in the synthesis of silver nanowires by polyol method. Appl Phys A Mater Sci Process 122(6):618

    Google Scholar 

  48. Nekahi A, Marashi SPH, Fatmesari DH (2016) High yield polyol synthesis of round and sharp end silver nanowires with high aspect ratio. Mater Chem Phys 184:130–137

    CAS  Google Scholar 

  49. Sun YG, Gates B, Mayers B, **a YN (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168

    CAS  Google Scholar 

  50. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94(2–3):449–453

    CAS  Google Scholar 

  51. Skrabalak SE, Wiley BJ, Kim M, Formo EV, **a YN (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8(7):2077–2081

    CAS  Google Scholar 

  52. Muzikansky A, Nanikashvili P, Grinblat J, Zitoun D (2013) Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles. J Phys Chem C 117(6):3093–3100

    CAS  Google Scholar 

  53. Xu QQ, Ma YL, Gang X, Yin JZ, Wang AQ, Gao JJ (2014) Comprehensive study of the role of ethylene glycol when preparing Ag@SBA-15 in supercritical CO2. J Supercrit Fluid 92:100–106

    CAS  Google Scholar 

  54. Gao Y, Jiang P, Song L, Liu LF, Yan XQ, Zhou ZQ, Liu DF, Wang JX, Yuan HJ, Zhang ZX, Zhao XW, Dou XY, Zhou WY, Wang G, **e SS (2005) Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. J Phys D Appl Phys 38(7):1061–1067

    CAS  Google Scholar 

  55. Abbasi NM, Yu HJ, Wang L, Zain ul A, Amer WA, Akram M, Khalid H, Chen YS, Saleem M, Sun RL, Shan J (2015) Preparation of silver nanowires and their application in conducting polymer nanocomposites. Mater Chem Phys 166:1–15

    CAS  Google Scholar 

  56. Sun YG, Mayers B, Herricks T, **a YN (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3(7):955–960

    CAS  Google Scholar 

  57. Sun Y, **a Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14(11):833–837

    CAS  Google Scholar 

  58. Wiley B, Sun YG, **a YN (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21(18):8077–8080

    CAS  Google Scholar 

  59. Tang X, Tsuji M (2010) Synthesis of silver nanowires in liquid phase. Nanowires Science and Technology. InTechOpen, New York

    Google Scholar 

  60. Korte KE, Skrabalak SE, **a YN (2008) Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 18(4):437–441

    CAS  Google Scholar 

  61. Zhang P, Wyman I, Hu JW, Lin SD, Zhong ZW, Tu YY, Huang ZZ, Wei YL (2017) Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater Sci Eng B Adv 223:1–23

    CAS  Google Scholar 

  62. Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ (2010) Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interface Sci 344(2):286–291

    CAS  Google Scholar 

  63. Yoo JH, Kim Y, Han MK, Choi S, Song KY, Chung KC, Kim JM, Kwak J (2015) Silver nanowire–conducting polymer–ITO hybrids for flexible and transparent conductive electrodes with excellent durability. ACS Appl Mater Interfaces 7(29):15928–15934

    CAS  Google Scholar 

  64. Yuksel R, Coskun S, Kalay YE, Unalan HE (2016) Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors. J Power Sources 328:167–173

    CAS  Google Scholar 

  65. Sekhar SC, Nagaraju G, Yu JS (2017) Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 36:58–67

    CAS  Google Scholar 

  66. Rathmell AR, Nguyen M, Chi M, Wiley BJ (2012) Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett 12(6):3193–3199

    CAS  Google Scholar 

  67. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    CAS  Google Scholar 

  68. Yildirim OA, Unalan HE, Durucan C (2013) Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: Structural, optical, and photocatalytic properties. J Am Ceram Soc 96(3):766–773

    CAS  Google Scholar 

  69. **e W, Li Y, Sun W, Huang J, **e H, Zhao X (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A Chem 216(2–3):149–155

    CAS  Google Scholar 

  70. Ta QTH, Park S, Noh JS (2017) Ag nanowire/ZnO nanobush hybrid structures for improved photocatalytic activity. J Colloid Interface Sci 505:437–444

    Google Scholar 

  71. Chapman CAR, Wang L, Biener J, Seker E, Biener MM, Matthews MJ (2016) Engineering on-chip nanoporous gold material libraries via precision photothermal treatment. Nanoscale 8(2):785–795

    CAS  Google Scholar 

  72. Weissmüller J, Viswanath RN, Kramer D, Zimmer P, Würschum R, Gleiter H (2003) Charge-induced reversible strain in a metal. Science 300(5617):312–315

    Google Scholar 

  73. Kramer D, Viswanath RN, Weissmüller J (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4(5):793–796

    CAS  Google Scholar 

  74. Chauvin A, Stephant N, Du K, Ding JJ, Wathuthanthri I, Choi CH, Tessier PY, El Mel AA (2017) Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys. Micromachines 8(6):168

    Google Scholar 

  75. Hwang B, Shin H-AS, Kim T, Joo Y-C, Han SM (2014) Highly reliable Ag nanowire flexible transparent electrode with mechanically welded junctions. Small 10(16):3397–3404

    CAS  Google Scholar 

  76. Hwang B, Li X, Kim SH, Lim S (2017) Effect of carbon nanotube addition on mechanical reliability of Ag nanowire network. Mater Lett 198:202–205

    CAS  Google Scholar 

  77. Wu J, Pan Y-T, Su D, Yang H (2015) Ultrathin and stable AgAu alloy nanowires. Sci China Mater 58(8):595–602

    CAS  Google Scholar 

  78. Xu S, Joseph S, Zhang HT, Lou J, Lu Y (2016) Controllable high-throughput fabrication of porous gold nanorods driven by Rayleigh instability. RSC Adv 6(71):66484–66489

    CAS  Google Scholar 

  79. Lin JY, Hsueh YL, Huang JJ (2014) The concentration effect of cap** agent for synthesis of silver nanowire by using the polyol method. J Solid State Chem 214:2–6

    CAS  Google Scholar 

  80. Sun Y, Ren Y, Liu Y, Wen J, Okasinski JS, Miller DJ (2012) Ambient-stable tetragonal phase in silver nanostructures. Nat Commun 3:971

    Google Scholar 

  81. Sun YG (2011) Growth of silver nanowires on GaAs wafers. Nanoscale 3(5):2247–2255

    CAS  Google Scholar 

  82. Sun YG, Mayers BT, **a YN (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485

    CAS  Google Scholar 

  83. Leach AM, McDowell M, Gall K (2007) Deformation of top-down and bottom-up silver nanowires. Adv Funct Mater 17(1):43–53

    CAS  Google Scholar 

  84. Wang S, Shan Z, Huang H (2017) The mechanical properties of nanowires. Adv Sci 4(4):1600332

    Google Scholar 

  85. Tao WW, Cao PH, Park HS (2018) Atomistic simulation of the rate-dependent ductile-to-brittle failure transition in bicrystalline metal nanowires. Nano Lett 18(2):1296–1304

    CAS  Google Scholar 

  86. Zhang Z, Huang S, Chen L, Zhu Z, Guo D (2017) Formation mechanism of fivefold deformation twins in a face-centered cubic alloy. Sci Rep 7:45405

    CAS  Google Scholar 

  87. Liang T, Zhou D, Wu Z, Shi P, Chen X (2018) Length-dependent dual-mechanism-controlled failure modes in silver penta-twinned nanowires. Nanoscale. https://doi.org/10.1039/c8nr03507e

    Article  Google Scholar 

  88. Jia CC, Yang P, Zhang AY (2014) Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires. Mater Chem Phys 143(2):794–800

    CAS  Google Scholar 

  89. Li SF, Zhang HY (2014) Effect of polyvinylpyrrolidone on the preparation of silver nanowires. In: Zeng J, Li J, Zhu H (eds) Chemical, material and metallurgical engineering Iii, Pts 1–3, vol 881–883. Advanced Material Research. Trans Tech Publications Ltd, Stafa-Zurich, pp 940–943

    Google Scholar 

  90. Reyes-Gasga J, Elechiguerra JL, Liu C, Camacho-Bragado A, Montejano-Carrizales JM, Yacaman MJ (2006) On the structure of nanorods and nanowires with pentagonal cross-sections. J Cryst Growth 286(1):162–172

    CAS  Google Scholar 

  91. Song YJ, Wang ML, Zhang XY, Wu JY, Zhang T (2014) Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Res Lett 9:17

    Google Scholar 

  92. Coskun S, Aksoy B, Unalan HE (2011) Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des 11(11):4963–4969

    CAS  Google Scholar 

  93. **a YN, **a XH, Wang Y, **e SF (2013) Shape-controlled synthesis of metal nanocrystals. MRS Bull 38(4):335–344

    CAS  Google Scholar 

  94. **ong YJ, Chen JY, Wiley B, **a YN, Aloni S, Yin YD (2005) Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J Am Chem Soc 127(20):7332–7333

    CAS  Google Scholar 

  95. Chen C, Wang L, Jiang GH, Yang Q, Wang JJ, Yu HJ, Chen T, Wang CL, Chen X (2006) The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology 17(2):466–474

    CAS  Google Scholar 

  96. Sun YG, Yin YD, Mayers BT, Herricks T, **a YN (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745

    CAS  Google Scholar 

  97. Amirjani A, Marashi P, Fatmehsari DH (2014) Effect of AgNO3 addition rate on aspect ratio of CuCl2-mediated synthesized silver nanowires using response surface methodology. Colloids Surf A Physicochem Eng Asp 444:33–39

    CAS  Google Scholar 

  98. Amirjani A, Fatmehsari DH, Marashi P (2015) Interactive effect of agitation rate and oxidative etching on growth mechanisms of silver nanowires during polyol process. J Exp Nanosci 10(18):1387–1400

    CAS  Google Scholar 

  99. Amirjani A, Marashi P, Fatmehsari DH (2016) The effect of agitation state on polyol synthesis of silver nanowire. Int Nano Lett 6(1):41–44

    CAS  Google Scholar 

  100. Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ (2011) Large-scale synthesis of silver nanowires via a solvothermal method. J Mater Sci Mater Electron 22(1):6–13

    Google Scholar 

  101. Ashkarran AA, Derakhshi M (2015) The effect of FeCl3 in the shape control polyol synthesis of silver nanospheres and nanowires. J Cluster Sci 26(5):1901–1910

    CAS  Google Scholar 

  102. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    CAS  Google Scholar 

  103. Shobin LR, Manivannan S (2014) One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett 10(6):1027–1031

    CAS  Google Scholar 

  104. Wiley B, Herricks T, Sun Y, **a Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(9):1733–1739

    CAS  Google Scholar 

  105. Lee SJ, Kim JW, Park JH, Porte Y, Kim JH, Park JW, Kim S, Myoung JM (2018) SWCNT-Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. J Mater Sci 53(17):12284–12294. https://doi.org/10.1021/nn501204t

    Article  CAS  Google Scholar 

  106. Bobinger M, Dergianlis V, Becherer M, Lugli P (2018) Comprehensive synthesis study of well-dispersed and solution-processed metal nanowires for transparent heaters. J Nanomater 2018:7304807

    Google Scholar 

  107. Sohn H, Woo YS, Shin W, Yun DJ, Lee T, Kim FS, Hwang J (2017) Novel transparent conductor with enhanced conductivity: hybrid of silver nanowires and dual-doped graphene. Appl Surf Sci 419:63–69

    CAS  Google Scholar 

  108. Cho S, Kang S, Pandya A, Shanker R, Khan Z, Lee Y, Park J, Craig SL, Ko H (2017) Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11(4):4346–4357

    CAS  Google Scholar 

  109. Chung WH, Park SH, Joo SJ, Kim HS (2018) UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res 11(4):2190–2203

    CAS  Google Scholar 

  110. Deshmukh R, Calvo M, Schreck M, Tervoort E, Sologubenko AS, Niederberger M (2018) Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes. ACS Appl Mater Interfaces 10(24):20748–20754

    CAS  Google Scholar 

  111. Zhang XY, Tang Z, Tian D, Liu KY, Wu W (2017) A self-healing flexible transparent conductor made of copper nanowires and polyurethane. Mater Res Bull 90:175–181

    CAS  Google Scholar 

  112. Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28(35):23

    Google Scholar 

  113. Duraisamy N, Hong SJ, Choi KH (2013) Deposition and characterization of silver nanowires embedded PEDOT:PSS thin films via electrohydrodynamic atomization. Chem Eng J 225:887–894

    CAS  Google Scholar 

  114. Wu H, Hu LB, Rowell MW, Kong DS, Cha JJ, McDonough JR, Zhu J, Yang YA, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10(10):4242–4248

    CAS  Google Scholar 

  115. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23(26):2905–2910

    CAS  Google Scholar 

  116. Yang LQ, Zhang T, Zhou HX, Price SC, Wiley BJ, You W (2011) Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Interfaces 3(10):4075–4084

    CAS  Google Scholar 

  117. Kumar A, Jiang J, Bae CW, Seo DM, Piao L, Kim SH (2014) Silver nanowire/polyaniline composite transparent electrode with improved surface properties. Mater Res Bull 57:52–57

    CAS  Google Scholar 

  118. Andrew P, Ilie A (2007) Functionalised silver nanowire structures. In: Meyer E, Hegner M, Gerber C, Guntherodt HJ (eds) Proceedings of the international conference on nanoscience techology. Journal of physics: conference series, vol 61. Iop Publishing Ltd., Bristol, pp 36–40

    Google Scholar 

  119. Lee HJ, Oh S, Cho KY, Jeong WL, Lee DS, Park SJ (2018) Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl Mater Interfaces 10(16):14124–14131

    CAS  Google Scholar 

  120. Miao JL, Chen S, Liu HH, Zhang XX (2018) Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chem Eng J 345:260–270

    CAS  Google Scholar 

  121. Jang YR, Chung WH, Hwang YT, Hwang HJ, Kim SH, Kim HS (2018) Selective wavelength plasmonic flash light welding of silver nanowires for transparent electrodes with high conductivity. ACS Appl Mater Interfaces 10(28):24099–24107

    CAS  Google Scholar 

  122. Sun JG, Yang TN, Wang CY, Chen LJ (2018) A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 48:383–390

    CAS  Google Scholar 

  123. Wang SH, Wang ZL, Yang Y (2016) A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energies by triboelectric-piezoelectric-pyroelectric effects. Adv Mater 28(15):2881–2887

    CAS  Google Scholar 

  124. **ong JQ, Li SH, Ye YY, Wang JX, Qian K, Cui P, Gao D, Lin MF, Chen TP, Lee PS (2018) A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv Mater 30(36):1802803

    Google Scholar 

  125. Kim H, Park Y, Choi D, Chu WS, Ahn SH, Chun DM, Lee CS (2018) Kinetic spraying of silver nanowire blended graphite powder to fabricate transparent conductive electrode and their application in electrochromic device. Appl Surf Sci 456:19–24

    CAS  Google Scholar 

  126. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963

    CAS  Google Scholar 

  127. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios. ACS Nano 3(7):1767–1774

    CAS  Google Scholar 

  128. Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23(5):664–668

    CAS  Google Scholar 

  129. Hsiao S-T, Tien H-W, Liao W-H, Wang Y-S, Li S-M, Mma C-C, Yu Y-H, Chuang W-P (2014) A highly electrically conductive graphene–silver nanowire hybrid nanomaterial for transparent conductive films. J Mater Chem C 2(35):7284–7291

    CAS  Google Scholar 

  130. Zhao YF, Zou WJ, Li H, Lu K, Yan W, Wei ZX (2017) Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chin J Polym Sci 35(2):261–268

    CAS  Google Scholar 

  131. Deng B, Hsu P-C, Chen G, Chandrashekar BN, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, **e Q, Cui Y, Liu Z, Peng H (2015) Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett 15(6):4206–4213

    CAS  Google Scholar 

  132. Wang DR, Zhang YK, Lu X, Ma ZJ, **e C, Zheng ZJ (2018) Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem Soc Rev 47(12):4611–4641

    CAS  Google Scholar 

  133. Wang B-Y, Lee E-S, Lim D-S, Kang HW, Oh Y-J (2017) Roll-to-roll slot die production of 300 mm large area silver nanowire mesh films for flexible transparent electrodes. RSC Adv 7(13):7540–7546

    CAS  Google Scholar 

  134. Kim D-J, Shin H-I, Ko E-H, Kim K-H, Kim T-W, Kim H-K (2016) Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels. Sci Rep 6:34322

    CAS  Google Scholar 

  135. Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman MJ (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. Chem Mater 17(24):6042–6052

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haojie Yu or Li Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, for the manuscript entitled, “Recent progress in the synthesis of silver nanowires and their role as conducting materials.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahad, S., Yu, H., Wang, L. et al. Recent progress in the synthesis of silver nanowires and their role as conducting materials. J Mater Sci 54, 997–1035 (2019). https://doi.org/10.1007/s10853-018-2994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2994-9

Keywords

Navigation