Log in

Synthesis of poly(m-phenylenediamine)-coated hexagonal Co9S8 for high-performance supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(m-phenylenediamine)-coated hexagonal Co9S8 was firstly synthesized by the polymerization with self-prepared hexagonal Co(OH)2 used as cobalt source, and the calcination with sulfur powder providing sulfur source. By adjusting the concentration of m-phenylenediamine in the polymerization process, the coating was achieved with the different coated results, further affecting their supercapacitor behaviors by improving diffusion path for fast electron transfer. The resulting Co9S8/PmPD electrodes demonstrate excellent electrochemical performance with high specific capacitance of 950.1 F g−1 at a current density of 0.5 Å g−1, good rate performance of 81.1% capacitance retention as the current density grows from 0.5 to 20 Å g−1, and almost no capacitance loss after 1000 cycles. Moreover, as asymmetric positive electrode material, the Co9S8/PmPD-1 shows high specific capacitance of 115.3 F g−1 at 0.5 Å g−1, outstanding rate performance of 78.2% capacitance retention even increased to 20 Å g−1, superior cycle stability of 87.9% capacitance retention after 5000 cycles at 2 Å g−1 and largest energy density of 36.0 W h kg−1 at power density of 374.67 W kg−1. This novel Co9S8/PmPD composite suggests a bright prospect for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kirill I, Fereshte G, Michael D, Horst L, Philip K (2009) Observation of the fractional quantum Hall effect in graphene. Nature 462:196–199

    Article  Google Scholar 

  2. Geim A (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  3. Chen S, Chen H, Li C, Fan M, Lv C, Tian G, Shu K (2017) Tuning the electrochemical behavior of CoxMn3−x sulfides by varying different Co/Mn ratios in supercapacitor. J Mater Sci 52:6687–6696. doi:10.1007/s10853-017-0903-2

    Article  Google Scholar 

  4. Xu G, Dou H, Geng X, Han J, Chen L, Zhu H (2017) Free standing three-dimensional nitrogen-doped carbon nanowire array for high-performance supercapacitors. Chem Eng J 308:222–228

    Article  Google Scholar 

  5. Li C, Zhang X, Wang K, Sun X, Liu G, Li J, Tian H, Li J, Ma Y (2017) Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv Mater 29:1604690. doi:10.1002/adma.201604690

    Article  Google Scholar 

  6. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4270

    Article  Google Scholar 

  7. Wei X, Jiang X, Wei J, Gao S (2016) Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem Mater 28:445–458

    Article  Google Scholar 

  8. Liu M, Gan L, Wei X, Xu Z, Zhu D, Chen L (2014) Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J Mater Chem A 2:2555–2562

    Article  Google Scholar 

  9. Lu W, Huang S, Miao L, Liu M, Zhu D, Li L, Duan H, Xu Z, Gan L (2017) Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin Chem Lett 28:1324–1329

    Article  Google Scholar 

  10. Bi RR, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C 114:2448–2451

    Article  Google Scholar 

  11. Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO2·nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng 4(5):2528–2534

    Article  Google Scholar 

  12. Lee ME, Kim NR, Song MY, ** HJ (2016) Microporous carbon nanoplate/amorphous ruthenium oxide hybrids as supercapacitor electrodes. J Nanosci Nanotechnol 16(10):10431–10436

    Article  Google Scholar 

  13. Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1:7880–7884

    Article  Google Scholar 

  14. ** R, Liu J, Xu Y, Li G, Chen G (2013) Solvothermal synthesis and excellent electrochemical performance of polycrystalline rose-like Co9S8 hierarchical architectures. J Mater Chem A 1:7995–7999

    Article  Google Scholar 

  15. Jayalakshmi M, Rao MM (2006) Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications. J Power Sources 157:624–629

    Article  Google Scholar 

  16. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  Google Scholar 

  17. Geng X, Zhang Y, Han Y, Li J, Yang L, Benamara M, Chen L, Zhu H (2017) Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett 17:1825–1832

    Article  Google Scholar 

  18. Pei L, Yang Y, Chu H, Shenn J, Ye M (2016) Self-assembled flower-like FeS2/graphene aerogel composite with enhanced electrochemical properties. Ceram Int 42:5053–5061

    Article  Google Scholar 

  19. Zhu T, **a B, Zhou L, Lou XW (2012) Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. J Mater Chem 22:7851–7855

    Article  Google Scholar 

  20. Tao F, Zhao YQ, Zhang GQ, Li HL (2007) Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem Commun 9:1282–1287

    Article  Google Scholar 

  21. Raj CJ, Kim BC, Cho WJ, Lee WG, Seo Y, Yu KH (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloys Compd 586:191–196

    Article  Google Scholar 

  22. Wang B, Park J, Su D, Wang C, Ahn H, Wang G (2012) Solvothermal synthesis of CoS2-graphene nanocomposite material for high-performance supercapacitors. J Mater Chem 22:15750–15756

    Article  Google Scholar 

  23. Yang Z, Chen CY, Chang HT (2011) Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J Power Sources 196:7874–7877

    Article  Google Scholar 

  24. Bao SJ, Li CM, Guo CX, Qiao Y (2008) Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J Power Sources 180:676–681

    Article  Google Scholar 

  25. Wan H, Ji X, Jiang J, Yu J, Miao L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402

    Article  Google Scholar 

  26. **ao J, Wan L, Yang S, **ao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838

    Article  Google Scholar 

  27. Song X, Tan L, Wang X, Zhu L, Yi X, Dong Q (2017) Synthesis of CoS@rGO composites with excellent electrochemical performance for supercapacitors. J Electroanal Chem 794:132–138

    Article  Google Scholar 

  28. ** M, Lu SY, Ma L, Gan MY, Lei Y, Zhang XL, Fu G, Yang PS, Yan MF (2017) Different distribution of in situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors. J Power Sources 341:294–301

    Article  Google Scholar 

  29. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  Google Scholar 

  30. **e H, Goodenough JB, Li Y (2011) Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Li-ion solid electrolyte. J Power Sources 196:7760–7762

    Article  Google Scholar 

  31. Lu J, Wang L, Lai Q, Chu H, Zhao Y (2009) Study of capacitive properties in supercapacitor for copolymer of aniline with m-phenylenediamine. J Solid State Electrochem 13:1803–1810

    Article  Google Scholar 

  32. Huang MR, Lu HJ, Li XG (2012) Synthesis and strong heavy-metal ion sorption of copolymer microparticles from phenylenediamine and its sulfonate. J Mater Chem 22(34):17685–17699

    Article  Google Scholar 

  33. Meng Y, Zhang L, Chai L, Yu W, Wang T, Dai S, Wang H (2014) Facile and large-scale synthesis of poly(m-phenylenediamine) nanobelts with high surface area and superior dye adsorption ability. RSC Adv 4(85):45244–45250

    Article  Google Scholar 

  34. Zhang LY, Wang HY, Yu WT, Su Z, Chai LY, Li JH, Shi Y (2012) Facile and large-scale synthesis of functional poly(mphenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. J Mater Chem 22(35):18244–18251

    Article  Google Scholar 

  35. Wu Q, Chen M, Chen K, Wang S, Wang C, Diao G (2016) Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. J Mater Sci 51:1572–1580. doi:10.1007/s10853-015-9480-4

    Article  Google Scholar 

  36. Wen J, Li S, La B, Song Z, Wang H, **ong R, Fang G (2015) Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application. J Power Sources 284:279–286

    Article  Google Scholar 

  37. Ramachandran R, Saranya M, Santhosh C, Velmurugan V, Raghupathy BPC, Jeong SK, Grace AN (2014) Co9S8 nanoflakes on graphene (Co9S8/G) nanocomposites for high performance supercapacitors. RSC Adv 4:21151–21162

    Article  Google Scholar 

  38. Wang T, Zhang L, Li C, Yang W, Song T, Tang C, Meng Y, Dai S, Wang H, Chai L, Luo J (2015) Synthesis of core–shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49:5654–5662

    Article  Google Scholar 

  39. Zhang L, Wang T, Wang H, Meng Y, Yu W, Chai L (2013) Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem Commun 49:9974–9976

    Article  Google Scholar 

  40. Liu M, Ma X, Gan L, Xu Z, Zhu D, Chen L (2014) A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. J Mater Chem A 2:17107–17114

    Article  Google Scholar 

  41. Miao L, Zhu D, Zhao Y, Liu M, Duan H, **ong W, Zhu Q, Li L, Lv Y, Gan L (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater. doi:10.1016/j.micromeso.2017.06.032

    Google Scholar 

  42. Feng LL, Li GD, Liu Y, Wu Y, Chen H, Wang Y, Zou YC, Wang D, Zou X (2015) Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl Mater Interfaces 7:980–988

    Article  Google Scholar 

  43. Tang Y, **g F, Xu Z, Zhang F, Mai Y, Wu D (2017) Highly crumpled hybrids of nitrogen/sulfur dual-doped graphene and Co9S8 nanoplates as efficient bifunctional oxygen electrocatalysts. ACS Appl Mater Interfaces 9:12340–12347

    Article  Google Scholar 

  44. Liu S, Mao C, Niu Y, Yi F, Hou J, Lu S, Jiang J, Xu M, Li C (2017) Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl Mater Interfaces 7:25568–25573

    Article  Google Scholar 

  45. Chai L, Wang T, Zhang L, Wang H, Yang W, Dai S, Meng Y, Li X (2015) A Cu-m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81:748–757

    Article  Google Scholar 

  46. Zhou H, Yao W, Li G, Wang J, Lu Y (2013) Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502

    Article  Google Scholar 

  47. Li K, Guo D, Lin F, Wei Y, Liu W, Kong Y (2015) Electrosorption of copper ions by poly(m-phenylenediamine)/reduced graphene oxide synthesized via a one-step in situ redox strategy. Electrochim Acta 166:47–53

    Article  Google Scholar 

  48. Lin TW, Dai CS, Tasi TT, Chou SW, Lin JY, Shen HH (2015) High-performance asymmetric supercapacitor based on Co9S8/3D graphene composite and graphene hydrogel. Chem Eng J 279:241–249

    Article  Google Scholar 

  49. Wu T, Ma X, Zhu T (2016) Carbon supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors. Mater Lett 183:290–295

    Article  Google Scholar 

  50. Chen H, Ai Y, Liu F, Chang X, Xue Y, Huang Q, Wang C, Lin H, Han S (2016) Carbon-coated hierarchical Ni–Mn layered double hydroxide nanoarrays on Ni foam for flexible high-capacitance supercapacitors. Electrochim Acta 213:55–65

    Article  Google Scholar 

  51. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    Article  Google Scholar 

  52. Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134:19532–19535

    Article  Google Scholar 

  53. Li B, Hu Y, Li J, Liu M, Kong L, Hu Y, Kang L (2016) Mechanical alloying synthesis of Co9S8 particles as materials for supercapacitors. Metals 6(6):142. doi:10.3390/met6060142

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Project Number 20976105), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201559), the Shanghai Leading Academic Discipline Project (Project Number J51503), Shanghai Municipal Education Commission boosting project (Project Number 15cxy39), Science and Technology Commission of Shanghai Municipality Project (Project Number 14520503200), Shanghai Talent Development Funding (Project Number 201335) and Shanghai Municipal Education Commission (Plateau Discipline Construction Program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualin Lin or Sheng Han.

Ethics declarations

Conflicts of interest

All authors listed have declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Chang, X., Lin, J. et al. Synthesis of poly(m-phenylenediamine)-coated hexagonal Co9S8 for high-performance supercapacitors. J Mater Sci 53, 759–773 (2018). https://doi.org/10.1007/s10853-017-1537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1537-0

Keywords

Navigation