Log in

Carbon-supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hydrothermal approach was used to build ultrathin Co9S8 nanosheets into a core–shell hollow framework called Co9S8@RGO, which was aided by carbon. In addition, the porous RGO matrix efficiently enhances the movement of electrons and ions. The Co9S8 nanosheets inserted into the RGO architecture significantly minimize the clustering of RGO nanosheets while offering several locations for pseudocapacitance responses at the same time. The Co9S8@RGO nanocomposites exhibited an exceptionally high specific capacitance of 3255 Fg−1 within a potential range of 0.5 V at a current density of 1 Ag−1. In addition, a type of supercapacitor called an asymmetric supercapacitor (ASC) was created using Co9S8@RGO as the positive electrode and activated carbon (AC) as the negative electrode. This ASC demonstrated a density of 88.8 Whkg−1 at a power density of 635 Wkg−1. Furthermore, it maintained an energy density of 67.5 Whkg−1 at a power density of 1565 Wkg−1. Additionally, it exhibited excellent cycle stability, with 80.61% specific capacity preservation at a current density of 10 Ag−1 after 10,000 periods. The Co9S8@RGO composite has a straightforward and inexpensive production process, as well as exceptional performance, which makes it an optimal electrode material for electrochemical devices that store energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. G.Q. Zhang, X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976–979 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. J.P. Wang, S.L. Wang, Z.C. Huang, Y.M. Yu, High-performance NiCo2O4@Ni3S2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2, 17595–17601 (2014)

    Article  CAS  Google Scholar 

  4. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. S. Abouali, M.A. Garakani, Z.L. Xu, J.K. Kim, NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon 102, 262–272 (2016)

    Article  CAS  Google Scholar 

  8. H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. **ao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. (2013). https://doi.org/10.1038/ncomms2932

    Article  PubMed  PubMed Central  Google Scholar 

  9. J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321, 651–652 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. L.B. Dong, C.J. Xu, Y. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J. Mater. Chem. A 4, 4659–4685 (2016)

    Article  CAS  Google Scholar 

  11. I.W.P. Chen, Y.S. Chen, N.J. Kao, C.W. Wu, Y.W. Zhang, H.T. Li, Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon 90, 16–24 (2015)

    Article  CAS  Google Scholar 

  12. G.X. Gao, H.B. Wu, S.J. Ding, L.M. Liu, X.W. Lou, Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804–808 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. F.X. Wang, S.Y. **ao, Y.Y. Hou et al., Electrode materials for aqueous asymmetric supercapacitors. RSC Adv. 3, 13059–13084 (2013)

    Article  CAS  Google Scholar 

  14. B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003)

    Article  CAS  Google Scholar 

  15. F.X. Wang, X.W. Wu, X.H. Yuan et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. X.Y. Yu, L. Yu, X.W.D. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6, 1501333 (2016)

    Article  Google Scholar 

  17. M. Xu, L. Kong, W. Zhou et al., Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141–19147 (2007)

    Article  CAS  Google Scholar 

  18. X. Lu, M. Yu, G. Wang et al., All-fabric flexible supercapacitor for energy storage. Adv. Mater. 25, 267–272 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. B. Wang, J. Park, D.W. Su, C.Y. Wang, H. Ahn, G.X. Wang, Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. J. Mater. Chem. 22, 15750–15756 (2012). https://doi.org/10.1039/C2JM31214J

    Article  CAS  Google Scholar 

  21. X.L. Mao, J.H. Xu, H. **n, W.Y. Yang, Y.J. Yang, X. Lu, Y.T. Zhao, Y.J. Zhou, All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes. Appl. Surf. Sci. 435, 1228–1236 (2018). https://doi.org/10.1016/j.apsusc.2017.11.248

    Article  CAS  Google Scholar 

  22. X.L. Mao, X. He, J.H. Xu, W.Y. Yang, H. Liu, Y.J. Yang, Y.J. Zhou, Three-dimensional reduced graphene oxide/poly(3,4-ethylenedioxythiophene) composite open network architectures for microsupercapacitors. Nanoscale Res. Lett. 14, 267 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  23. X.L. Mao, W.Y. Yang, H. **n, C. Yan, Y.T. Zhao, Y.J. Zhou, Y.J. Yang, J.H. Xu, The preparation and characteristic of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Mat. Sci. Eng. B-Adv 216, 16–22 (2017)

    Article  CAS  Google Scholar 

  24. X. Zhang, S.W. Liu, Y.P. Zang, R.R. Liu, G.Q. Liu, G.Z. Wang, Y.X. Zhang, H.M. Zhang, H.J. Zhao, Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 30, 93–102 (2016)

    Article  CAS  Google Scholar 

  25. S.X. Sun, J.H. Luo, Y. Qian, Y. **, Y. Liu, Y.G. Qiu, X. Li, C. Fang, J.T. Han, Y.H. Huang, Metal-organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8, 1801080 (2018)

    Article  Google Scholar 

  26. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9, 6288–6296 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. J. Yang, C. Yu, X.M. Fan, S.X. Liang, S.F. Li, H.W. Huang, Z. Ling, C. Hao, J.S. Qiu, Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016)

    Article  CAS  Google Scholar 

  28. S. Salgado, L. Pu, V. Maheshwari, Targeting chemical morphology of graphene oxide for self-assembly and subsequent templating of nanoparticles: a composite approaching capacitance limits in graphene. J. Phys. Chem. C 116, 12124–12130 (2012)

    Article  CAS  Google Scholar 

  29. M. Yang, Y.R. Zhong, J.J. Ren, X.L. Zhou, J.P. Wei, Z. Zhou, Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 5, 1500550 (2015)

    Article  Google Scholar 

  30. F.F. Liu, Y.C. Liu, X.D. Zhao, X.B. Liu, L.Z. Fan, Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J. Mater. Chem. A 7, 1–8 (2019)

    Google Scholar 

  31. A. Thissen, D. Ensling, W. Jaegermann, R. Alcántara, A. Pedro Lavela, J.L. Tirado, Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chem. Mater. 17, 5202–5208 (2005)

    Article  CAS  Google Scholar 

  32. J. Pu, Z. Wang, K. Wu, N. Yu, E. Sheng, Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 16, 785–791 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. G. Morgese, P. Dolcet, A. Feis, C. Gellini, S. Gialanella, A. Speghini, D. Badocco, P. Pastore, M. Casarin, S. Gross, Room-Temperature crystallization of CuS nanostructures for photothermal applications through a nanoreactor approach. Eur. J. Inorg. Chem. 2017, 2745–2754 (2017)

    Article  CAS  Google Scholar 

  34. Y. Wang, Z.X. Chen, T. Lei, Y.F. Ai, Z.K. Peng, X.Y. Yan, H. Li, J. Zhang, Z.M. Wang, Y. Chueh, Hollow NiCo2S4 nanospheres hybridized with 3D hierarchical porous rGO/Fe2O3 composites toward high-performance energy storage device. Adv. Energy Mater. 8, 1703453 (2018)

    Article  Google Scholar 

  35. Y. Liu, X. Teng, Y. Mi, Z. Chen, A new architecture design of Ni–Co LDH-based pseudocapacitors. J. Mater. Chem. A 5, 24407–24415 (2017)

    Article  CAS  Google Scholar 

  36. M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D.G. Evans, X. Duan, Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem. Mater. 24, 1192–1197 (2012)

    Article  CAS  Google Scholar 

  37. Z. Huang, S. Wang, J. Wang, Y. Yu, J. Wen, R. Li, Exfoliation-restacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors. Electrochim. Acta 152, 117–125 (2015)

    Article  CAS  Google Scholar 

  38. J.P. Cheng, J.H. Fang, M. Li, W.F. Zhang, F. Liu, X.B. Zhang, Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films. Electrochim. Acta 114, 68–75 (2013)

    Article  CAS  Google Scholar 

  39. M. Li, J.P. Cheng, J. Wang, F. Liu, X.B. Zhang, The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta 206, 108–115 (2016)

    Article  CAS  Google Scholar 

  40. L. Zhang, K.N. Hui, K.S. Hui, H. Lee, Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim. Acta 186, 522–529 (2015)

    Article  CAS  Google Scholar 

  41. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, L. Liu, Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J. Power. Sources 246, 747–753 (2014)

    Article  CAS  Google Scholar 

  42. X. Li, Z. Yang, W. Qi, Y. Li, Y. Wu, S. Zhou, S. Huang, J. Wei, H. Li, P. Yao, Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance. Appl. Surf. Sci. 363, 381–388 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

D. Venkatesan and T. Annamalai contributed to study conceptualization and writing (original draft) the manuscript. S. Ramkumar, D. Kanagajothi, and P. Siva Karthik contributed to data curation, formal analysis, and writing (review & editing).

Corresponding author

Correspondence to P. Siva Karthik.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, D., Annamalai, T., Ramkumar, S. et al. Carbon-supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors. J Mater Sci: Mater Electron 35, 1051 (2024). https://doi.org/10.1007/s10854-024-12832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12832-w

Navigation