Log in

Synthesis of highly dispersed silver nanoparticles or nano-network modified KIT-6 using supercritical carbon dioxide

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mesoporous KIT-6-supported highly dispersed silver nanoparticles and nano-networks were successfully synthesized in supercritical carbon dioxide and co-solvent solution using AgNO3 as a precursor, followed by calcinations. The nanocomposites were characterized by XRD, TEM, ICP, and N2 adsorption–desorption isotherms. Three kinds of co-solvents were investigated including ethanol, the mixture of ethanol and ethylene glycol, and the mixture of ethanol and water. It was found that when only ethanol was used as a co-solvent, a small amount of AgNO3 was deposited onto the complex nanochannels of KIT-6 even if the deposition time was 12 h. However, it took a short deposition time of 1 h to deposit a large amount of precursors onto the substrates when the mixture of ethanol and ethylene glycol and the mixture of ethanol and water were used as co-solvents. The large solubility of AgNO3 in ethylene glycol or water had a positive effect on the dissolution of precursor in scCO2, which was beneficial to the adsorption of precursor on the substrates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328(5975):224–228. doi:10.1126/science.1185200

    Article  Google Scholar 

  2. Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506. doi:10.1126/science.1067003

    Google Scholar 

  3. Nowack B (2010) Chemistry. Nanosilver revisited downstream. Science 330(6007):1054–1055. doi:10.1126/science.1198074

    Article  Google Scholar 

  4. Hong BH, Bae SC, Lee CW, Jeong S, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294(5541):348–351. doi:10.1126/science.1062126

    Article  Google Scholar 

  5. Cao YC, ** R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi:10.1126/science.297.5586.1536

    Article  Google Scholar 

  6. Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170(2–3):547–554. doi:10.1016/j.cej.2011.01.099

    Article  Google Scholar 

  7. Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, Sheng J (2012) Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. J Mater Chem 22(45):24132. doi:10.1039/c2jm35621j

    Article  Google Scholar 

  8. Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77(1):1–45. doi:10.1016/j.micromeso.2004.06.030

    Article  Google Scholar 

  9. Tsoncheva T, Rosenholm J, Teixeira CV, Dimitrov M, Linden M, Minchev C (2006) Preparation, characterization and catalytic behavior in methanol decomposition of nanosized iron oxide particles within large pore ordered mesoporous silicas. Microporous Mesoporous Mater 89(1–3):209–218. doi:10.1016/j.micromeso.2005.10.028

    Article  Google Scholar 

  10. Tsoncheva T, Rosenholm J, Linden M, Ivanova L, Minchev C (2007) Iron and copper oxide modified SBA-15 materials as catalysts in methanol decomposition: effect of copolymer template removal. Appl Catal A 318:234–243. doi:10.1016/j.apcata.2006.11.008

    Article  Google Scholar 

  11. Chen W, Zhang J, Di Y, Wang Z, Fang Q, Cai W (2003) Size controlled Ag nanoparticles within pores of monolithic mesoporous silica by ultrasonic irradiation. Appl Surf Sci 211(1–4):280–284. doi:10.1016/s0169-4332(03)00244-7

    Article  Google Scholar 

  12. Zhao Y, Qi Y, Wei Y, Zhang Y, Zhang S, Yang Y, Liu Z (2008) Incorporation of Ag nanostructures into channels of nitrided mesoporous silica. Microporous Mesoporous Mater 111(1–3):300–306. doi:10.1016/j.micromeso.2007.08.004

    Article  Google Scholar 

  13. Han J, Fang P, Jiang W, Li L, Guo R (2012) Ag-nanoparticle-loaded mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications. Langmuir 28(10):4768–4775. doi:10.1021/la204503b

    Article  Google Scholar 

  14. Zhang X, Qu Z, Li X, Zhao Q, Wang Y, Quan X (2011) Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in situ “pH-adjusting” method. Catal Commun 16(1):11–14. doi:10.1016/j.catcom.2011.08.030

    Article  Google Scholar 

  15. Huang X, Dong W, Wang G, Yang M, Tan L, Feng Y, Zhang X (2011) Synthesis of confined Ag nanowires within mesoporous silica via double solvent technique and their catalytic properties. J Colloid Interface Sci 359(1):40–46. doi:10.1016/j.jcis.2011.03.049

    Article  Google Scholar 

  16. Naik B, Hazra S, Prasad VS, Ghosh NN (2011) Synthesis of Ag nanoparticles within the pores of SBA-15: an efficient catalyst for reduction of 4-nitrophenol. Catal Commun 12(12):1104–1108. doi:10.1016/j.catcom.2011.03.028

    Article  Google Scholar 

  17. Zhu W, Han Y, An L (2005) Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites. Microporous Mesoporous Mater 80(1–3):221–226. doi:10.1016/j.micromeso.2004.12.018

    Article  Google Scholar 

  18. Yin A, Wen C, Dai W-L, Fan K (2011) Ag/MCM-41 as a highly efficient mesostructured catalyst for the chemoselective synthesis of methyl glycolate and ethylene glycol. Appl Catal B 108–109:90–99. doi:10.1016/j.apcatb.2011.08.013

    Article  Google Scholar 

  19. Zhao H, Zhou J, Luo H, Zeng C, Li D, Liu Y (2006) Synthesis, characterization of Ag/MCM-41 and the catalytic performance for liquid-phase oxidation of cyclohexane. Catal Lett 108(1–2):49–54. doi:10.1007/s10562-006-0024-z

    Article  Google Scholar 

  20. Kumar N, Konova PM, Naydenov A, Heikill T, Salmi T, Murzin DY (2004) Synthesis of novel Ag modified MCM-41 mesoporous molecular sieve and beta zeolite catalysts for ozone decomposition at ambient temperature. Catal Lett 98(1):57–60. doi:10.1007/s10562-004-6449-3

    Article  Google Scholar 

  21. Pourahmad A, Sohrabnezhad S (2009) Preparation and characterization of Ag nanowires in mesoporous MCM-41 nanoparticles template by chemical reduction method. J Alloy Compd 484(1–2):314–316. doi:10.1016/j.jallcom.2009.04.089

    Article  Google Scholar 

  22. Zhang X, Qu Z, Jia J, Wang Y (2012) Ag nanoparticles supported on wormhole HMS material as catalysts for CO oxidation: effects of preparation methods. Powder Technol 230:212–218. doi:10.1016/j.powtec.2012.07.031

    Article  Google Scholar 

  23. Kim TW, Kleitz F, Paul B, Ryoo R (2005) MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. J Am Chem Soc 127(20):7601–7610. doi:10.1021/ja042601m

    Article  Google Scholar 

  24. Kleitz F, Hei Choi S, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes Electronic supplementary information (ESI) available: tEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. Chem Commun 17:2136. doi:10.1039/b306504a

    Article  Google Scholar 

  25. Johnston KP, Shah PS (2004) Materials science. Making nanoscale materials with supercritical fluids. Science 303(5657):482–483. doi:10.1126/science.1093951

    Article  Google Scholar 

  26. Bozbag SE, Sanli D, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: part II. Chemical transformations. J Mater Sci 47(8):3469–3492. doi:10.1007/s10853-011-6064-9

    Article  Google Scholar 

  27. Sanli D, Bozbag SE, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: part I. Physical transformations. J Mater Sci 47(7):2995–3025. doi:10.1007/s10853-011-6054-y

    Article  Google Scholar 

  28. Xu QQ, Wang YQ, Wang AQ, Yin J-z (2012) Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents: morphology control, thermodynamics and kinetics of adsorption. Nanotechnology 23(28):285602. doi:10.1088/0957-4484/23/28/285602

    Article  Google Scholar 

  29. Sun Z, Liu Z, Han B, Miao S, Miao Z, An G (2006) Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution. J Colloid Interface Sci 304(2):323–328. doi:10.1016/j.jcis.2006.09.029

    Article  Google Scholar 

  30. Sun Z, Liu Z, Han B, An G (2007) Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes. Mater Lett 61(23–24):4565–4568. doi:10.1016/j.matlet.2007.02.052

    Article  Google Scholar 

  31. Yin JZ, Xu QQ, Wang AQ (2010) Controlled Growth of Copper Nanoparticles and Nanorods in the Channels of Sba-15 by Supercritical Fluid Deposition. Chem Eng Commun 197(4):627–632. doi:10.1080/00986440903249676

    Article  Google Scholar 

  32. Xu QQ, Zhang CJ, Zhang XZ, Yin JZ, Liu Y (2012) Controlled synthesis of Ag nanowires and nanoparticles in mesoporous silica using supercritical carbon dioxide and co-solvent. J Supercrit Fluids 62:184–189. doi:10.1016/j.supflu.2011.12.008

    Article  Google Scholar 

  33. Long DP, Blackburn JM, Watkins JJ (2000) Chemical fluid deposition: a hybrid technique for low-temperature metallization. Adv Mater 12(12):913–915. doi:10.1002/1521-4095(200006

    Article  Google Scholar 

  34. Ye XR, Lin Y, Wang C, Wai CM (2003) Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Adv Mater 15(4):316–319. doi:10.1002/adma.200390077

    Article  Google Scholar 

  35. Cabañas A, Long DP, Watkins JJ (2004) Deposition of gold films and nanostructures from supercritical carbon dioxide. Chem Mater 16(10):2028–2033. doi:10.1021/cm034739u

    Article  Google Scholar 

  36. Watkins JJ, Blackburn JM, McCarthy TJ (1999) Chemical fluid deposition: reactive deposition of platinum metal from carbon dioxide solution. Chem Mater 11(2):213–215. doi:10.1021/cm981016f

    Article  Google Scholar 

  37. Erkey C (2009) Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. J Supercrit Fluids 47(3):517–522. doi:10.1016/j.supflu.2008.10.019

    Article  Google Scholar 

  38. Zhou L, Le Z (1994) Handbook of industrial inorganic salts. Chemical Industry Press, China

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (20976026, 20976028, 21376045) and Doctoral Fund of Ministry of Education of China (20120041110022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, QQ., Ma, YL., Xu, G. et al. Synthesis of highly dispersed silver nanoparticles or nano-network modified KIT-6 using supercritical carbon dioxide. J Mater Sci 50, 855–862 (2015). https://doi.org/10.1007/s10853-014-8646-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8646-9

Keywords

Navigation