Log in

Mathematical Properties of Pyramid-Transform-Based Resolution Conversion and Its Applications

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we aim to clarify the statistical and geometric properties of linear resolution conversion for registration between different resolutions observed using the same modality. The pyramid transform is achieved by smoothing and downsampling. The dual operation of the pyramid transform is achieved by linear smoothing after upsampling. The rational-order pyramid transform is decomposed into upsampling for smoothing and the conventional integer-order pyramid transform. By controlling the ratio between upsampling for smoothing and downsampling in the pyramid transform, the rational-order pyramid transform is computed. The tensor expression of the multiway pyramid transform implies that the transform yields orthogonal base systems for any ratio of the rational pyramid transform. The numerical evaluation of the transform shows that the rational-order pyramid transform preserves the normalised distribution of greyscale in images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983). https://doi.org/10.1109/TCOM.1983.1095851

    Article  Google Scholar 

  2. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2, 217–236 (1983). https://doi.org/10.1145/245.247

    Article  Google Scholar 

  3. Jolion, J.-M., Rosenfeld, R.: An \(O(log n)\) pyramid hough transform. PRL 9, 343–349 (1989). https://doi.org/10.1016/0167-8655(89)90063-9

    Article  Google Scholar 

  4. MacLean, W.J., Tsotsos, J.K.: Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation. Mach. Vis. Appl. 19, 163–179 (2008). https://doi.org/10.1007/s00138-007-0089-8

    Article  Google Scholar 

  5. Alelaiwi, A., Abdul, W., Solaiman Dewan, M., Migdadi, M., Ghulam Muhammad, M.: Steerable pyramid transform and local binary pattern based robust face recognition for e-health secured login. Comput. Electr. Eng. 53, 435–443 (2016). https://doi.org/10.1016/j.compeleceng.2016.01.008

    Article  Google Scholar 

  6. Kounalakis, T., Boulgouris, N.V.: Classification of 2D and 3D images using pyramid scale decision voting. In: 2014 IEEE International Conference on Image Processing (ICIP2014), pp. 957–960, (2014). https//doi.org/10.1109/ICIP.2014.7025192

  7. Biswas, R., Roy, S., Biswas, A.: MRI and CT image indexing and retrieval using steerable pyramid transform and local neighborhood difference pattern. Int. J. Comput. Appl. 44, 1005–1014 (2022). https://doi.org/10.1080/1206212X.2022.2092937

    Article  Google Scholar 

  8. Zang, X., Li, G., Gao, W.: Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval. IEEE Trans. Ind. Inform. 18, 8776–8785 (2022). https://doi.org/10.1109/TII.2022.3151766

    Article  Google Scholar 

  9. Wang, X., Feng, D.: Bi-hierarchy medical image registration based on steerable pyramid transform. In: Li, K., Li, X., Irwin, G.W., He, G. (eds.) Life System Modeling and Simulation. LSMS 2007. Lecture Notes in Computer Science, vol. 4689, pp. 370–379. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74771-0_42

  10. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Anne, L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention? MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0

  11. Pizlo, Z., Stefanov, E., Saalweachter, J., Li, Z., Haxhimusa, Y., Kropatsch, W.G.: Traveling salesman problem: a foveating pyramid model. J. Probl. Solv. 1, 8 (2006). https://doi.org/10.7771/1932-6246.1009

    Article  Google Scholar 

  12. Haxhimusa, Y., Kropatsch, W.G., Pizlo, Z., Ion, A., Lehrbaum, A.: Approximating TSP solution by MST based graph pyramid. In: Escolano, F., Vento, M. (eds.) Graph-Based Representations in Pattern Recognition. GbRPR2007. Lecture Notes in Computer Science, vol. 4538, pp. 295–306. Springer, Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_27

  13. Haxhimusa, Y., Carpenter, E., Catrambone, J., Foldes, D., Stefanov, E., Arns, L., Pizlo, Z.: 2D and 3D traveling salesman problem. J Probl Solv 3, 8 (2011). https://doi.org/10.7771/1932-6246.1096

    Article  Google Scholar 

  14. Haddad, R.A., Akansu, A.N.: A class of fast Gaussian binomial filters for speech and image processing. IEEE Trans Sign Process 39, 723–727 (1991). https://doi.org/10.1109/78.80892

    Article  ADS  Google Scholar 

  15. Young, I.T., van Vliet, L.J.: Recursive implementation of the Gaussian filter. Sign. Process. 44, 139–151 (1995). https://doi.org/10.1016/0165-1684(95)00020-E

    Article  Google Scholar 

  16. Lindeberg, T.: Scale-space for discrete signals. PAMI 12, 234–254 (1990). https://doi.org/10.1109/34.49051

    Article  Google Scholar 

  17. Lindeberg, T.: Discrete derivative approximations with scale-space properties: a basis for low-Level feature extraction. J. Math. Imag. Vis. 3, 349–376 (1993). https://doi.org/10.1007/BF01664794

    Article  Google Scholar 

  18. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9

  19. Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Patt. Recogn. 35, 1355–1370 (2002). https://doi.org/10.1016/S0031-3203(01)00118-2

    Article  ADS  Google Scholar 

  20. Kamarainen, J.-K., Kyrki, V., Ilonen, J., Kaelviäinen, H.: Improving similarity measures of histograms using smoothing projections. PRL 24, 2009–2019 (2003). https://doi.org/10.1016/S0167-8655(03)00039-4

    Article  Google Scholar 

  21. Arevalillo-Herraez, M., Domingo, J., Ferri, F.J.: Combining similarity measures in content-based image retrieval. PRL 29, 2174–2181 (2008). https://doi.org/10.1016/j.patrec.2008.08.003

    Article  Google Scholar 

  22. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996). https://doi.org/10.1007/BF02392620

    Article  MathSciNet  Google Scholar 

  23. Kaijser, T.: Computing the Kantorovich distance for images. JMIV 9, 173–191 (1998). https://doi.org/10.1023/A:100838972691

    Article  MathSciNet  Google Scholar 

  24. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and war**. IJCV 60, 225–240 (2004). https://doi.org/10.1023/B:VISI.0000036836.66311.97

    Article  Google Scholar 

  25. Fischer, B., Modersitzki, J.: Ill-posed medicine- an introduction to image registration. Inverse Prob. 24, 1–17 (2008). https://doi.org/10.1088/0266-5611/24/3/034008

    Article  MathSciNet  Google Scholar 

  26. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press (2003). https://doi.org/10.1093/acprof:oso/9780198528418.001.0001

    Article  Google Scholar 

  27. Nguyen, H.T., Nguyen L.-T.: The Laplacian pyramid with rational scaling factors and application on image denoising. In: Proceedings of 10th International Conference on Information Science, Signal Processing and Their Applications (ISSPA 2010) 10th ISSPA, pp. 468–471 (2010). https://doi.org/10.1109/ISSPA.2010.5605441

  28. Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9, 2083–2099 (2000). https://doi.org/10.1109/83.887976

    Article  ADS  PubMed  Google Scholar 

  29. Ohnishi, N., Kameda, Y., Imiya, A., Dorst, L., Klette, R.: Dynamic multiresolution optical flow computation. In: Sommer, G., Klette, R. (eds.) Robot Vision, RobVis 2008. LNCS, vol. 4931, pp. 1–15. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  30. Kropatsch, W.G.: A pyramid that grows by powers of 2. PRL 3, 315–322 (1985). https://doi.org/10.1016/0167-8655(85)90062-5

    Article  Google Scholar 

  31. Meer, P., Jiang, S.-N., Baugher, E.S., Rosenfeld, A.: Robustness of image pyramids under structural perturbations. CVGIP 44, 307–331 (1988). https://doi.org/10.1016/0734-189X(88)90127-2

    Article  Google Scholar 

  32. Meer, P.: Stochastic image pyramids. CVGIP 45, 269–294 (1989). https://doi.org/10.1016/0734-189X(89)90084-4

    Article  Google Scholar 

  33. Mayer, H., Kropatsch, W.G.: Progressive Bildubertragung mit der \(3\times 3/2\) Pyramide. In: Burkhardt, H. Höhne, K.-H., Neumann, B. (eds.) Informatik-Fachberichte, 219, DAGM-Symposium 1989, pp. 160–167 (1989). https://doi.org/10.1007/978-3-642-75102-8

  34. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Fundamentals of Algorithms) (2019)

    Google Scholar 

  35. Henn, S., Witsch, K.: Multimodal image registration using a variational approach. SIAM J. Sci. Comput. 25, 1429–1447 (2004). https://doi.org/10.1137/S1064827502201424

    Article  MathSciNet  Google Scholar 

  36. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE TMI 16, 187–198 (1997). https://doi.org/10.1109/42.563664

    Article  CAS  Google Scholar 

  37. Modersitzki,J., Haber, E.: Cofir: Coarse and Fine Image Registration. In: Lorenz T., Biegler, L.T. Ghattas, O., Heinkenschloss, M., Keyes, D., Bloemen Waanders, B. (eds) Real-Time PDE-Constrained Optimization, SIAM, pp. 277–288 (2007). https://doi.org/10.1137/1.9780898718935

  38. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006. MICCAI 2006. LNCS, vol. 4191, pp. 726–733. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11866763_89

  39. Fletcher, P., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis f or the study of nonlinear statistics of shape. IEEE TMI 23, 995–1005 (2004). https://doi.org/10.1109/TMI.2004.831793

    Article  Google Scholar 

  40. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. IJCV 50, 329–343 (2002). https://doi.org/10.1023/A:1020830525823

    Article  Google Scholar 

  41. Hermosillo, G., Faugeras, O.: Well-posedness of two nonridged multimodal image registration methods. SIAM J. Appl. Math. 64, 1550–1587 (2002). https://doi.org/10.1137/S0036139903424904

    Article  Google Scholar 

  42. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention -MICCAI 2009, MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_37

  43. Feng, J., Ma, L., Bi, F., Zhang, X., Chen, H.: A coarse-to-fine image registration method based on visual attention model. Sci. China Inf. Sci. 57, 1–10 (2014)

    Article  ADS  Google Scholar 

  44. Huai, Y., Yang, W., Liu, Y.: Coarse-to-fine accurate registration for airborne SAR images using SAR-Fast and DSP-LATCH. Progr. Electromagn. Res. 163, 89–106 (2018). https://doi.org/10.2528/PIER18070801

    Article  Google Scholar 

  45. Shepp, L.A., Kruskal, J.: Computerized tomography: the new medical X-ray technology. Am. Math. Month. 85, 420–439 (1978)

    Article  MathSciNet  Google Scholar 

  46. Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imag. Sci. 2, 800–833 (2009). https://doi.org/10.1137/080738337

    Article  MathSciNet  Google Scholar 

  47. Inagaki, S., Itoh, H., Imiya, A.: Multiple alignment of spatiotemporal deformable objects f or the average-organ computation. In: Agapito, L., Bronstein, M., Rother, C. (eds.) Computer Vision: ECCV 2014 Workshops, ECCV 2014. LNCS, vol. 8928, pp. 336–356. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-16220-1_25

  48. Brudfors, M., Balbastre, Y., Ashburner, J.: Groupwise multimodal image registration using joint total variation. In: Papie, B., Namburete, A., Yaqub, M., Noble, J. (eds.) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol. 1248, pp. 184–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_15

  49. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer (2011). https://doi.org/10.1007/978-1-4419-8474-6

    Article  Google Scholar 

  50. Stark, H. (ed.): Image Recovery: Theory and Application. Elsevier (2013)

  51. van Ouwerkerk, J.D.: Image super-resolution survey. Image Vis. Comput. 24, 1039–1052 (2006). https://doi.org/10.1016/j.imavis.2006.02.026

    Article  Google Scholar 

  52. Morera-Delfín, L., Pinto-Elías, R., Ochoa-Domínguez, Hd.J.: Overview of super-resolution techniques. In: Vergara Villegas, O., Nandayapa, M., Soto, I. (eds.) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77770-2_5

  53. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. (CL56 in the SIAM series CLASSICS in Applied Mathematics) SIAM, (2009) The original edition was published by Pitman Publishing Limited, London, 1979, in the series Surveys and Reference Works in Mathematics, and was reprinted by Dover Publications in 1991. https://doi.org/10.1137/1.9780898719048

  54. Collatz, R.: Numerische Behandlung von Differentialgleichungen. Springer, Berlin, Heidelberg (1951). https://doi.org/10.1007/978-3-662-05500-7 . (English TranslationThe Numerical Treatment of Differential Equations (1966))

  55. Lanczos, C.: Applied Analysis. Prentice Hall (1956)

  56. Lasota, A.: A discrete boundary value problem. Ann. Polon. Math. 20, 84–190 (1968). https://doi.org/10.4064/AP-20-2-183-190Corpus

    Article  MathSciNet  Google Scholar 

  57. Hansen, PCh.: Discrete Inverse Problems: Insight and Algorithms. SIAM (2019). https://doi.org/10.1137/1.9780898718836

    Article  Google Scholar 

  58. Quarteroni,A., Sacco, R., Saleri, F.: Numerische Mathematik, Vols. 1 and 2, Springer, (2002) https://doi.org/10.1007/b98885

  59. Grossmann, Ch., Ross, H.-G.: Numerik partieller Differntialgeleichungen. B. G. Teubner, Stuttgart (1994)

    Book  Google Scholar 

  60. Hackbusch, W.: Multi-Grid Methods and Applications, (Springer Series in Computational Mathematics, 4), (1985) https://doi.org/10.1007/978-3-662-02427-0

  61. Bredies, K., Lorenz, D.: Mathematische Bildverarbeitung, Einfuhrung in Grundlagen und moderne Theorie. B. G. Teubner, Stuttgart (2014). https://doi.org/10.1007/978-3-8348-9814-2

  62. Scherzer, O.: Handbook of Mathematical Methods in Imaging, 1st edn. Springer (2011). https://doi.org/10.1007/978-0-387-92920-0

  63. Louis, A.K.: Inverse und Schlecht Gestellte Probleme. B. G. Teubner, Stuttgart (1989). https://doi.org/10.1007/978-3-322-84808

  64. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004). https://doi.org/10.1023/B:JMIV.0000011325.36760.1e

    Article  MathSciNet  Google Scholar 

  65. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley (2008). https://doi.org/10.1002/9780470238004

    Article  Google Scholar 

  66. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.-I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley (2009). https://doi.org/10.1002/9780470747278

    Article  Google Scholar 

  67. Ballester-Ripoll, R., Steiner, D., Pajarola, R.: Multiresolution volume filtering in the tensor compressed domain. IEEE TVCG 24, 2714–2727 (2018). https://doi.org/10.1109/TVCG.2017.2771282

    Article  PubMed  Google Scholar 

  68. Ballester-Ripoll, R., Paredes, E.G., Pajarola, R.: Sobol tensor trains for global sensitivity analysis. Reliab. Eng. Syst. Saf. 183, 311–322 (2019). https://doi.org/10.1016/j.ress.2018.11.007

    Article  Google Scholar 

  69. Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice Hall, Hoboken (1975)

    Google Scholar 

  70. Bracewell, R.N.: Two-Dimensional Imaging. Prentice-Hall Signal Processing Series. Prentice Hall, Hoboken (1995)

    Google Scholar 

  71. Bracewell, R.N.: Fourier Transform and its Applications. McGraw-Hill, New York (1978)

    Google Scholar 

  72. Lindeberg, T.: Scale-Space Theory in Computer Vision. Springer Edition in The Springer International Series in Engineering and Computer Science, Kluwer Academic Publishers (1994). https://doi.org/10.1007/978-1-4757-6465-9

  73. Jolion, J.-M., Rosenfeld, A.: A Pyramid Framework for Early Vision: Multiresolutional Computer Vision. The Springer International Series in Engineering and Computer Science, Springer, New York (1994). https://doi.org/10.1007/978-1-4615-2792-3

  74. Montanvert, A., Meer, P., Bertolino, P.: Hierarchical shape analysis in grey-level images. In: Toet, A., Foster, D., Heijmans, H.J.M., Meer, P. (eds.) Shape in Picture, NATO ASI F, vol. 126, pp. 511–524. Springer, Berlin, Heidelberg (1994). https://doi.org/10.1007/978-3-662-03039-4

  75. Kropatsch, W.G., Willersinn, D.: Irregular curve pyramids, pp. 525–537

  76. Alejandro, D., Amaro, V., Bhalerao, A.: Hierarchical contour shape analysis. Comput. Sistemas 19, 233–242 (2015)

    Google Scholar 

  77. Tschirsich, M., Kuijper, K.: Notes on discrete gaussian scale space. JMIV 51, 106–123 (2015). https://doi.org/10.1007/s10851-014-0509-0

    Article  MathSciNet  Google Scholar 

  78. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). ((in Japanese))

  79. Lindeberg, T.: Generalized axiomatic scale-space theory. In: Hawkes, W. (Eds) Advances in Imaging and Electron Physics, pp. 1–96 (2013). https://doi.org/10.1016/B978-0-12-407701-0.00001-7

  80. Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale representations. In: Griffin, L.D., Lillholm, M. (eds) Proc. Scale-Space’03, LNCS, vol. 2695, (complete version Technical report ISRN KTH/NA/P-03/07-SE, June 2003), pp. 148–163 (2003)

  81. Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE PAMI 6, 156–170 (1984). https://doi.org/10.1109/TPAMI.1984.4767500

    Article  CAS  Google Scholar 

  82. Crowley, J.L., Sanderson, A.C.: Multiple resolution representation and probabilistic matching of 2-D gray-scale shape. IEEE PAMI 9, 113–121 (1987). https://doi.org/10.1109/TPAMI.1987.4767876

    Article  CAS  Google Scholar 

  83. Crowley, J.L., Stern, R.M.: Fast computation of the difference of low-pass transform. IEEE PAMI 6, 212–222 (1984). https://doi.org/10.1109/TPAMI.1984.4767504

    Article  CAS  Google Scholar 

  84. Sakai, T., Imiya, A.: Gradient structure of image in scale space. JMIV 28, 243–257 (2007). https://doi.org/10.1007/s10851-007-0005-x

    Article  MathSciNet  Google Scholar 

  85. Sakai, T., Imiya, A.: Validation of watershed regions by scale-space statistics. In: Tai, X.-C., Moerken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 175–186. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02256-2_15

  86. Sakai, T., Narita, Mr ., Komazaki, T., Nishiguchi, H. Imiya, A.: Image hierarchy in Gaussian scale space. In: Hawkes, P.W. (Eds.) Advances in Imaging and Electron Physics, vol. 165, pp. 175–263 (2011) https://doi.org/10.1016/B978-0-12-385861-0.00005-1

  87. Van De Ville, D., Unser, M.: The Marr wavelet pyramid and multiscale directional image analysis. In: 2008 16th European Signal Processing Conference, pp. 1–5 (2008). https://ieeexplore.ieee.org/xpl/conhome/7080219/proceeding

  88. Sabre, R., Sri, I., Wahyuni, I.S.: Wavelet decomposition in Laplacian pyramid for image fusion. Int. J. Sign. Process. Syst. 4, 37–44 (2016). https://doi.org/10.12720/ijsps.4.1.37-44

  89. Marfil, R., Antunez, E., Bandera, A.: Hierarchical segmentation of range images inside the combinatorial pyramid. Neurocomputing 161, 81–88 (2015). https://doi.org/10.1016/j.neucom.2015.01.075

    Article  Google Scholar 

  90. Cerman, M., Janusch, I., González-Díaz, R., Kropatsch, W.G.: Topology-based image segmentation using LBP pyramids. Mach. Vis. Appl. 27, 1161–1174 (2016). https://doi.org/10.1007/s00138-016-0795-1

    Article  Google Scholar 

  91. **g, H., **, W., Jiliu, Z.: Noise robust single image super-resolution using a multiscale image pyramid. Sign. Process. 148, 157–171 (2018). https://doi.org/10.1016/j.sigpro.2018.02.020

    Article  Google Scholar 

  92. Wang, Z., Cui, Z., Zhu, Y.: Multi-modal medical image fusion by Laplacian pyramid and adaptive sparse representation. Comput. Biol. Med. 123, 103823 (2020). https://doi.org/10.1016/j.compbiomed.2020.103823

    Article  PubMed  Google Scholar 

  93. Shuman, D.I., Faraji, M.J., Vandergheynst, P.: A multiscale pyramid transform for graph signals. IEEE TSP 64, 2119–2134 (2016). https://doi.org/10.1109/TSP.2015.2512529

    Article  MathSciNet  Google Scholar 

  94. Brun, L., Kropatsch, W.G.: Contains and inside relationships within combinatorial pyramids. Patt. Recogn. 39, 515–526 (2006). https://doi.org/10.1016/j.patcog.2005.10.015

    Article  ADS  Google Scholar 

  95. Mochizuki, Y., Imiya, A., Sakai, T., Imaizumi, T.: Variational method for super-resolution optical flow. Sign. Process. 91, 1535–1567 (2011). https://doi.org/10.1016/j.sigpro.2010.11.010

    Article  Google Scholar 

  96. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: International Conference on Learning Representations (ICLR2016) (2016), CoRR abs/1511.07122. (2015) arxiv:1511.07122

  97. Hu, K., Fang, Y.: 3D Laplacian pyramid signature. In: Jawahar, C., Shan, S. (eds.) Computer Vision?: ACCV 2014 Workshops. ACCV 2014. LNCS, vol. 9010. Springer, Cham (2015)

  98. Trottenberg, U., Oosterlee, C.W., Schulle, A.: Multigrid. Academic Press (2001)

  99. Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley (2007)

    Google Scholar 

  100. Papadakis, N., Rabin, J.: Convex histogram-based joint image segmentation with regularized optimal transport cost. JMIV 59, 161–186 (2017). https://doi.org/10.1007/s10851-017-0725-5

    Article  MathSciNet  Google Scholar 

  101. Bazan, E., Dokladal, P., Dokladalova, E.: Quantitative analysis of similarity measures of distributions. In: British Machine Vision Conference 2019, BMVC 2019, Cardiff (209). https://core.ac.uk/download/pdf/231938789.pdf

  102. Itoh, H., Imiya, A., Sakai, T.: Discriminative properties in directional distributions for image pattern recognition. In: Braunl, T., McCane, B., Rivera, M., Yu, X. (eds.) Image and Video Technology. PSIVT 2015. LNCS, vol. 9431, pp. 617–630. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29451-3_49

  103. Cabrelli, C.A., Molter, U.M.: The Kantorovich metric for probability measures on the circle. J. Comput. Appl. Math. 57, 345–361 (1995). https://doi.org/10.1016/0377-0427(93)E0213-6

    Article  MathSciNet  Google Scholar 

  104. Cabrelli, C.A., Molter, U.M.: A linear time algorithm for a matching problem on the circle. IPL 66, 161–164 (1998). https://doi.org/10.1016/S0020-0190(98)00048-9

    Article  MathSciNet  Google Scholar 

  105. Delon, J., Salomon, J., Sobolevski, A.: Fast transport optimization for Monge costs on the circle. SIAM. J. Appl. Math. 70, 2239–2258 (2010). https://doi.org/10.1137/090772708

    Article  MathSciNet  Google Scholar 

  106. Rabin, J., Delon, J., Gousseau, Y.: Transportation distances on the circle. JMIV 41, 147–167 (2011). https://doi.org/10.1007/s10851-011-0284-0

    Article  Google Scholar 

  107. Solomon, J: Optimal transport on discrete domains. ar**v, (2018) (2018 AMS Short Course on Discrete Differential Geometry http://geometry.cs.cmu.edu/ddgshortcourse/) https://arxiv.org/abs/1801.07745

  108. Bogachev, V.I., Kolesnikov, A.V.: The Monge-Kantorovich problem: achievements, connections, and perspectives. Russ. Math. Surv. 67, 785–890 (2012). https://doi.org/10.1070/RM2012v067n05ABEH004808

    Article  Google Scholar 

  109. Ledoux, M.: Sobolev-Kantorovich inequalities. Anal. Geom. Metr. Spaces 3, 157–166 (2015). https://doi.org/10.1515/agms-2015-0011

    Article  Google Scholar 

  110. Bigot, J.: Statistical data analysis in the Wasserstein space. ESAIM: Process and Surv. 68, 1–19 (2020). https://doi.org/10.1051/proc/202068001

  111. Olkin, I., Pukelsheim, F.: The distance between two random vectors with given dispersion matrices. Linear Algebra Appl. 48, 257–263 (1982). https://doi.org/10.1016/0024-3795(82)90112-4

    Article  MathSciNet  Google Scholar 

  112. Rüschendorf, L., Rachev, S.T.: A characterization of random variables with minimum \(L_2\)-distance. J. Multivar. Anal. 32, 48–54 (1992). https://doi.org/10.1016/0047-259X(90)90070-X

    Article  Google Scholar 

  113. Haasler, I., Frossard, P., Bures-Wasserstein means of graphs, ar**v:2305.19738v1, 2023

  114. Bigot, J., Guet, R., Klein, T., Lopéz, A.: Geodesic PCA in the Wasserstein space by convex PCA Ann. Inst. H. Poincare Probab. Statist. 53, 1–26 (2017). https://doi.org/10.1214/15-AIHP706

    Article  Google Scholar 

  115. Campbell, J.: The SMM model as a boundary value problem using the discrete diffusion equation. Theor. Popul. Biol. 72, 539–546 (2007). https://doi.org/10.1016/j.tpb.2007.08.001

    Article  PubMed  Google Scholar 

  116. Hanke, M. Nagy, J., Plemmons, R.: Preconditioned iterative regularization for ill-posed problems. In: Arden Ruttan, A., Varga, R.S. (eds) Numerical Linear Algebra: Proceedings of the Conference in Numerical Linear Algebra and Scientific Computation, In the series De Gruyter Proceedings in Mathematics (1993). https://doi.org/10.1515/9783110857658.141, https://doi.org/10.1515/9783110857658

  117. Ng, K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (2000). https://doi.org/10.1137/S1064827598341384

    Article  MathSciNet  Google Scholar 

  118. Perrone, L.: Kronecker product approximations for image restoration with anti-reflective boundary conditions. Numer. Linear Algebra Appl. 13, 1–22 (2006). https://doi.org/10.1002/nla.458

    Article  MathSciNet  Google Scholar 

  119. Donatelli, M.: Fast transforms for high order boundary conditions in deconvolution problems. BIT Numer. Math. 50, 559–576 (2010). https://doi.org/10.1007/s10543-010-0266-4

    Article  MathSciNet  Google Scholar 

  120. Donatelli, M., Reichel, L.: Square smoothing regularization matrices with accurate boundary conditions. J. Comput. Appl. Math. 272, 334–349 (2014). https://doi.org/10.1016/j.cam.2013.08.015Donatelli2014

    Article  MathSciNet  Google Scholar 

  121. Yosida, K.: Functional Analysis. Springer, Berlin, Heidelberg (1965). https://doi.org/10.1007/978-3-642-61859-8

  122. Kolmogorov, A.N., Fomin, S.V.: Elements of the theory of functions and functional analysis, Vols. 1 and 2, Nauka, Moscow, (1957) (English translation: Graylock Press, Rochester, New York, (1957), Reprint of English edition: Dover Publications (1999))

  123. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    Google Scholar 

  124. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, (1974) (Generalized Inverses: Theory and Applications. 2nd ed., Springer, (2003)

  125. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1972)

    Google Scholar 

  126. Strang, G., Nguyen, T.: Wavelets and Filter Banks, 2nd edn. Wellesley-Cambridge Press (1996)

  127. Demmel, J.W.: Applied numerical linear algebra. SIAM (1997). https://doi.org/10.1137/1.9781611971446

    Article  Google Scholar 

  128. Lindeberg, T.: Scale-space for discrete signals. PAMI 12, 234–254 (1990). https://doi.org/10.1109/34.49051

    Article  Google Scholar 

  129. Institut fur Algorithmen und Kognitive Systeme, KTH, (Group Prof. Dr. H.-H. Nagel) Image Sequence Server http://i21www.ira.uka.de/image_sequences/#dt

  130. Geisler, W.S., Perry, J.S.: Statistics for optimal point prediction in natural images. J. Vis. 11(12), 14 (2011)

    Article  PubMed  Google Scholar 

  131. A microCT scan of dried hazelnuts with leaves. Department of Informatics Visualization and Multimedia Lab, University of Zurich, Research Datasets, https://www.ifi.uzh.ch/en/vmml/research/datasets.html

  132. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: online Interface to a 3D MRI simulated brain database. NeuroImage 5(4), S425 (1997)

    Google Scholar 

  133. Computational Anatomy for Computer-Aided Diagnosis and Therapy: Frontiers of Medical Image Sciences, (2009-2013) 21103001 https://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-21103001/ by Grant-in-Aid for Scientific Research on Innovative Areas, MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan. (2009–2013) 21103001

  134. Multidisciplinary Computational Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy (2014–2018) 26108001 Grant-in-Aid for Scientific Research on Innovative Areas, MEXT(Ministry of Education, Culture, Sports, Science and Technology), Japan http://wiki.tagen-compana.org/mediawiki/index.php/Main_Pagehttps://kaken.nii.ac.jp/grant/KAKENHI-ORGANIZER-26108001/

  135. The Lenna Story - www.lenna.org:Imaging Experts Meet Lenna in Person. (2001) http://www.lenna.org/

  136. Mori, K., Oda, M.: Micro-CT volumetric image database creation for multi-scale image processing algorithm development—Database creation for algorithm development in multi-disciplinary computational anatomy. IEICE Technical Report, MI2015-108, vol. 105(401), pp. 165–170 (2016)

  137. Dikbas, S., Altunbasak, Y.: Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation. IEEE TIP 22, 2931–2945 (2012). https://doi.org/10.1109/TIP.2012.2222893

    Article  MathSciNet  Google Scholar 

  138. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE TIP 15, 2226–2238 (2006). https://doi.org/10.1109/tip.2006.877407

    Article  Google Scholar 

  139. Otsu, N.: A threshold selection method from gray-level histograms. IEEE SMC 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  140. Najman, L., Schmitt, M.: Watershed of a continuous function. Sign. Process. 38, 99–112 (1994). https://doi.org/10.1016/0165-1684(94)90059-0

    Article  Google Scholar 

  141. Wright, A.S., Acton, S.T.: Watershed pyramids for edge detection. In: Proceedings of 1997, International Conference on Image Processing, ICIP1997, Vol. 2, pp. 578–581 (1997). https://doi.org/10.1109/ICIP.1997.638837

  142. Meer, P., Baugher, E.S., Rosenfeld, A.: Frequency domain analysis and synthesis of image pyramid generating kernels. PAMI 19, 512–522 (1987)

    Article  Google Scholar 

  143. Chin, F., Choi, A., Luo, Y.: Optimal generating kernels for image pyramids by piecewise fitting. PAMI 14, 1190–1198 (1992)

    Article  Google Scholar 

  144. Thévenaz, P., Blu, T., Unser, M.: Image interpolation and resampling. In: Bankman, I. N. Ed.: Handbook of Medical Imaging, pp. 393–420, Elsevier (2000) https://doi.org/10.1016/B978-012077790-7/50030-8. http://bigwww.epfl.ch/publications/thevenaz9901.pdf

  145. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Company (1966)

Download references

Acknowledgements

This research was supported by the Multidisciplinary Computational Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy project funded by a Grant-in-Aid for Scientific Research on Innovative Areas from MEXT, Japan under 26108003 and by Grants-in-Aid for Scientific Research funded by the Japan Society for the Promotion of Science, under 20K11881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

10 Appendix

10 Appendix

1.1 10.1 Alternative Proof of Theorem 1

The relation

$$\begin{aligned}{} & {} \int _{\textbf{R}^n}\int _{\textbf{R}^n} f(\varvec{y})w(\varvec{x}-\varvec{y})g(\varvec{x})\textrm{d}\varvec{y}\textrm{d}\varvec{x} \end{aligned}$$
$$\begin{aligned}{} & {} \qquad =\int _{\textbf{R}^n}\int _{\textbf{R}^n} f(\varvec{x})w(\varvec{x}-\varvec{y})g(\varvec{y})\textrm{d}\varvec{x}\textrm{d}\varvec{y} \end{aligned}$$
(174)

is satisfied if \(w(-\varvec{x})=w(\varvec{x})\).

We have the relation

$$\begin{aligned} (R_\sigma f,g)= & {} \int _{\textbf{R}^n} \left( \int _{\textbf{R}^n}w_\sigma (\varvec{y})f(\sigma \varvec{x}-\varvec{y})\textrm{d}\varvec{y}\right) g(\varvec{x}) \textrm{d}\varvec{x}\nonumber \\= & {} \int _{\textbf{R}^n} \left( \int _{\textbf{R}^n}w_\sigma (\sigma \varvec{x}-\varvec{y})f(\varvec{y})\textrm{d}\varvec{y}\right) g(\varvec{x}) \textrm{d}\varvec{x}\nonumber \\= & {} \int _{\textbf{R}^n} f(\varvec{x})\left( \int _{\textbf{R}^n} w_\sigma (\varvec{x}-\varvec{y})\sigma ^ng\left( \frac{\varvec{y}}{\sigma }\right) d\varvec{y}\right) \textrm{d}\varvec{x}\nonumber \\= & {} \int _{\textbf{R}^n} f(\varvec{x})\left( \sigma ^n\int _{\textbf{R}^n} w_\sigma (\varvec{u}) g\left( \frac{\varvec{x}-\varvec{u}}{\sigma }\right) \textrm{d}\varvec{u}\right) \textrm{d}\varvec{x}\nonumber \\= & {} (f, E_\sigma g). \end{aligned}$$
(175)

1.2 10.2 Discrete Scale Space Transform and Binomial Coefficients

The coefficients of the binomial polynomial

$$\begin{aligned}{} & {} (1+x)^{2n}=c_{2n}(0)+c_{2n}(1)x\nonumber \\{} & {} \qquad +c_{2n}(2)x^2+\cdots +c_{2n}(2n)x^{2n} \end{aligned}$$
(176)

are

$$\begin{aligned} c_{2n}(k)= \left( \begin{array}{c} 2n\\ k \end{array}\right) =\frac{(2n!)}{k!(2n-k)!} \end{aligned}$$
(177)

for \(k=0,1,\ldots ,2n\). The discrete function

$$\begin{aligned} p_{2n}(k)=\frac{1}{2^{2n}}c_{2n}(k+n)=\frac{1}{2^{2n}} \left( \begin{array}{c} 2n\\ n+k \end{array}\right) , \end{aligned}$$
(178)

for \(k=-n,-n+1,\ldots , n\), satisfies the conditions \(p_{2n}(k)\ge 0\) for \(|k|\le n\), \(p_{2n}(k)=0\) for \(|k|>n\), \(p_{2n}(k)=p_{2n}(-k)\), \(\max p_{2n}(k)=p_{2n}(0)\) and \(\sum _{k=-n}^n p_{2n}(k)=1\).

Since the equality

$$\begin{aligned} \left( \begin{array}{c} 2n\\ n+k \end{array} \right) = \left( \begin{array}{c} 2n\\ n-k \end{array} \right) \end{aligned}$$
(179)

is satisfied for \(k=0,1,2,\ldots , n\), the discrete function

$$\begin{aligned} q_{2n}(k)=\frac{1}{2^{2n}}\left( \begin{array}{c} 2n\\ n-|k| \end{array} \right) \end{aligned}$$
(180)

implies the relations

$$\begin{aligned} q_{2n}(k)=p_{2n}(k)=\frac{1}{2^{2n}}c_{2n}(k+n) \end{aligned}$$
(181)

for \(k=0,1,2,\ldots , n\) and \(q_{2n}(k)=q_{2n}(-k)\) for \(k=0,-1,-2,\ldots ,-n\).

Since

$$\begin{aligned} (1+x)^{2m}(1+x)^{2n}=(1+x)^{2(m+n)}=\sum _{k=0}^{2(m+n)}c_{2(m+n)}(k)x^k \nonumber \\ \end{aligned}$$
(182)

and

$$\begin{aligned} q_{2(m+n)}(k)=p_{2(m+n)}(k)= \frac{1}{2^{2(m+n)}}c_{2(m+n)}(k), \end{aligned}$$
(183)

the relation

$$\begin{aligned} \sum _{l=-\infty }^\infty q_{2m}(l)q_{2n}(k-l)= q_{2(m+n)}(k) \end{aligned}$$
(184)

is satisfied. Therefore, the kernel function \(\{q_{2n}(k)\}_{k=-n}^n\) satisfies the semi-group property with respect to the parameter n.

1.3 10.3 Scaling Linear Scale-Space Transform

For a triplet of non-negative functions \(f(\varvec{x})\), \(g(\varvec{x})\) and \(h(\varvec{x})\), the equality

$$\begin{aligned}{} & {} \int _{\textbf{R}^n}\int _{\textbf{R}^n}g(\varvec{x})h(\varvec{y}-\varvec{x})f(\varvec{y})\textrm{d}\varvec{y}\textrm{d}\varvec{x}\nonumber \\= & {} \int _{\textbf{R}^n}\int _{\textbf{R}^n}g(\varvec{x})h(\varvec{x}-\varvec{y})f(\varvec{y})\textrm{d}\varvec{x}\textrm{d}\varvec{y}\nonumber \\= & {} \int _{\textbf{R}^n}\int _{\textbf{R}^n}h(\varvec{x}-\varvec{y})g(\varvec{x})f(\varvec{y})\textrm{d}\varvec{x}\textrm{d}\varvec{y} \end{aligned}$$
(185)

is satisfied assuming \(h(-\varvec{x})=h(\varvec{x})\). Let

$$\begin{aligned} G_\tau (x)=\frac{1}{\sqrt{2\pi \tau }}\exp \left( -\frac{x^2}{2\tau }\right) . \end{aligned}$$
(186)

Setting

$$\begin{aligned} h(y)=\int _{-\infty }^\infty G_\tau (x-y)f(\varvec{x})\textrm{d}y, \end{aligned}$$
(187)

the quadratic form satisfies the relation

$$\begin{aligned}{} & {} \int _{-\infty }^\infty \int _{-\infty }^\infty f(x)G_\tau (y-x) s g\left( \frac{y}{s}\right) \textrm{d}y\textrm{d}x\nonumber \\= & {} \int _{-\infty }^\infty h(y)s g\left( \frac{y}{s}\right) \textrm{d}y\nonumber \\= & {} \int _{-\infty }^\infty h(sy) g(y)\textrm{d}y. \end{aligned}$$
(188)

Therefore, the dual transform of the scaling linear scale-space transform is

$$\begin{aligned} f(x)=G_\tau ^{s*} g(x) =s\int _{-\infty }^\infty G_\tau (y)f\left( \frac{x-y}{s}\right) \textrm{d}y. \end{aligned}$$
(189)

The decomposition of the scaling linear scale-space transform

$$\begin{aligned} G_\tau ^\sigma f(x)=\int _{-\infty }^\infty G_\tau (s y-x)f(x)\textrm{d}y \end{aligned}$$
(190)

as \(G_\tau ^s=S_s G_\tau \) implies the inequality \(| G_\tau ^\sigma f|_2^2\le \frac{1}{\sigma ^n}|f|_2^2\) since \(\int _{-\infty }^\infty G_s^\tau (x)dx=1\).

1.4 10.4 Numerical Methods

1.4.1 10.4.1 Vectorisation of Discrete Functions

Using the two-dimensional discrete function \(\{f_{i,j}\}_{i=1,j=1}^{n,n}\) constructed from the sample \(f_{i,j}=f(x_i,y_j)\) of the function f(xy), we the image matrix

$$\begin{aligned} \varvec{F}=\left( \begin{array}{cccc} f_{1,1}&{}f_{1,2}&{}\ldots &{}f_{1,n}\\ f_{2,1}&{}f_{2,2}&{}\ldots &{}f_{2,n}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ f_{n,1}&{}f_{n,2}&{}\ldots &{}f_{n,n} \end{array}\right) . \end{aligned}$$
(191)

Next, we construct the vector

$$\begin{aligned} \varvec{f}=\varvec{e}_1\otimes \varvec{F}\varvec{e}_1+\varvec{e}_2\otimes \varvec{F}\varvec{e}_2, \end{aligned}$$
(192)

where \(\varvec{e}_1=(1,0)^\top \) and \(\varvec{e}_2=(0,1)^\top \), for numerical computation of the partial differential equation.

From the discrete vector field \(\{u_{1,i,j}, u_{2,i,j}\}_{i=1,j=1}^{n,n}\) for \(u_{1,i,j}=u_1(x_i,y_j)\) and \(u_{2,i,j}=u_2(x_i,y_j)\) of the vector-valued function \(\varvec{u}(x,y)=(u_1(x,y),u_2(x,y))^\top \), we construct the vector

$$\begin{aligned} \varvec{u}=\left( \begin{array}{c} \varvec{u}_1\\ \varvec{u}_2 \end{array}\right) =\varvec{e}_1\otimes \varvec{u}_2+\varvec{e}_2\otimes \varvec{u}_2, \end{aligned}$$
(193)

where, for \(i=1,2\),

$$\begin{aligned}{} & {} \varvec{u}_1=\varvec{e}_1\otimes \varvec{U}_1\varvec{e}_1+\varvec{e}_2\otimes \varvec{U}_2\varvec{e}_2, \nonumber \\{} & {} \varvec{u}_2=\varvec{e}_1\otimes \varvec{U}_2\varvec{e}_1+\varvec{e}_2\otimes \varvec{U}_2\varvec{e}_2 \end{aligned}$$
(194)

and

$$\begin{aligned} \varvec{U}_1= & {} \left( \begin{array}{cccc} u_{1,1,1}&{}u_{1,1,2}&{}\ldots &{}u_{1,1,n}\\ u_{1,2,1}&{}u_{1,2,2}&{}\ldots &{}u_{1,2,n}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ u_{1,n,1}&{}u_{1,n,2}&{}\ldots &{}u_{1,n,n} \end{array}\right) , \end{aligned}$$
(195)
$$\begin{aligned} \varvec{U}_2= & {} \left( \begin{array}{cccc} u_{2,1,1}&{}u_{2,1,2}&{}\ldots &{}u_{2,1,n}\\ u_{2,2,1}&{}u_{2,2,2}&{}\ldots &{}u_{2,2,n}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ u_{2,n,1}&{}u_{2,n,2}&{}\ldots &{}u_{2,n,n} \end{array}\right) . \end{aligned}$$
(196)

1.4.2 10.4.2 Discretisation of Linear Diffusion Equation

The hierarchical images in the linear scale space are computed by solving the three-dimensional diffusion equation [99, 127]

$$\begin{aligned} \frac{\partial f}{\partial \tau }=\frac{1}{2}\left( \frac{\partial ^2 f}{\partial x^2} + \frac{\partial ^2 f}{\partial y^2} + \frac{\partial ^2 f}{\partial z^2}\right) \end{aligned}$$
(197)

with the Neumann condition. The numerical computation of the diffusion equation is achieved by semi-implicit discretisation [99, 126, 127]

$$\begin{aligned} \frac{\varvec{f}^{(m+1)}-\varvec{f}^{(m)}}{\tau } =\frac{1}{2}\varvec{K}_n^{(3)}\varvec{f}^{(m+1)}, \end{aligned}$$
(198)

where

$$\begin{aligned} \varvec{K}_n^{(3)}= & {} \frac{1}{4}(\varvec{D}_n\oplus \varvec{D}_n\oplus \varvec{D}_n)\nonumber \\= & {} \frac{1}{4}\varvec{D}_n\otimes \varvec{I}_n\otimes \varvec{I}_n\nonumber \\{} & {} \hspace{1cm}+\frac{1}{4}\varvec{I}_n\otimes \varvec{D}_n\otimes \varvec{I}_n\nonumber \\{} & {} \hspace{2cm}+\frac{1}{4}\varvec{I}_n\otimes \varvec{I}_n\otimes \varvec{D}_n, \end{aligned}$$
(199)

for \(n\times n\) matrices.

1.4.3 10.4.3 Variational Image Registration

The solutions of variational problems for image registration are the solutions for \(t=\infty \) of the system of diffusion equations

$$\begin{aligned} \frac{\partial \varvec{v}}{\partial t}= & {} \Delta \varvec{v} -\frac{1}{\lambda }(f(\varvec{y}+\varvec{R}_\sigma \varvec{u})\nonumber \\{} & {} -R_\sigma g(\varvec{y}-\varvec{v})) \nabla _{\varvec{v}} R_\sigma g(\varvec{y}-\varvec{v}), \end{aligned}$$
(200)
$$\begin{aligned} \frac{\partial \varvec{u}}{\partial t}= & {} \Delta \varvec{u} -\frac{1}{\lambda }(E_\sigma f(\varvec{x}+\varvec{E}_\sigma \varvec{v})\nonumber \\{} & {} -g(\varvec{x}-\varvec{u}))\nabla _{\varvec{u}} g(\varvec{x}-\varvec{u}), \end{aligned}$$
(201)

with the boundary conditions

$$\begin{aligned} \frac{\partial }{\partial \varvec{m}}\varvec{v}=0,\, \, \, \frac{\partial }{\partial \varvec{n}}\varvec{u}=0. \end{aligned}$$
(202)

Semi-implicit discretisation of Eqs. (200) and (201) yields the system of iterations

$$\begin{aligned}{} & {} \left( \begin{array}{cc} 1,&{}0\\ 0,&{}1 \end{array}\right) \otimes (\varvec{I}-\tau \varvec{K}_n)\varvec{v}^{(m+1)}\nonumber \\{} & {} =\varvec{v}^{(m)}\nonumber \\{} & {} - \frac{\tau }{\lambda } (f(\varvec{y}+\varvec{R}_{q/p} \varvec{u}^{(m)})\nonumber \\{} & {} -R_{q/p} g(\varvec{y}-\varvec{v}^{(m)})) \nabla _{\varvec{v}} R_{q/p} g(\varvec{y}-\varvec{v}^{(m)}), \end{aligned}$$
(203)
$$\begin{aligned}{} & {} \left( \begin{array}{cc} 1,&{}0\\ 0,&{}1 \end{array}\right) \otimes (\varvec{I}-\tau \varvec{K}_{np/q})\varvec{u}^{(m+1)}\nonumber \\{} & {} =\varvec{u}^{(m)}\nonumber \\{} & {} -\frac{\tau }{\lambda }(E_{q/p} f(\varvec{x}+\varvec{E}_{q/p} \varvec{v}^{(m)})\nonumber \\{} & {} -g(\varvec{x}-\varvec{u}^{(m)})) \nabla _{\varvec{u}} g(\varvec{x}-\varvec{u}^{(m)}). \end{aligned}$$
(204)

For the Neumann boundary condition, the Laplacian matrix is expressed as

$$\begin{aligned} \varvec{K}_k =\frac{1}{4}\varvec{D}_k\otimes \varvec{I}_k+\frac{1}{4}\varvec{I}_k\otimes \varvec{D}_k, \end{aligned}$$
(205)

for \(k\times k\) matrices.

1.4.4 10.4.4 Resolution Interpolation

As the minimiser of Eq. (172), we have the system of differential equations

$$\begin{aligned} \Delta h&=\frac{1}{\mu } \left\{ (h(\varvec{x}+\varvec{u})-f_{q/p}(\varvec{x}) )\right. \nonumber \\&\hspace{1cm}\left. +(h(\varvec{x}+\varvec{v})-g^{r/s}(\varvec{x})) \right\} , \end{aligned}$$
(206)
$$\begin{aligned} \Delta \varvec{u}&= \frac{1}{\lambda }\left\{ (h(\varvec{x}+\varvec{u})-f_{q/p}(\varvec{x}) )\nabla _{\varvec{u}} h(\varvec{x}+\varvec{u}) \right\} , \end{aligned}$$
(207)
$$\begin{aligned} \Delta \varvec{v}&= \frac{1}{\lambda }\left\{ (h(\varvec{x}+\varvec{v})-g^{r/s}(\varvec{x}) )\nabla _{\varvec{v}}h(\varvec{x}+\varvec{v}) \right\} . \end{aligned}$$
(208)

Then, the semi-implicit discretisation of the system of the diffusion equations

$$\begin{aligned} \frac{\partial h}{\partial t}= & {} \Delta h-a(\varvec{x}), \end{aligned}$$
(209)
$$\begin{aligned} \frac{\partial \varvec{u}}{\partial t}= & {} \Delta \varvec{u}-\varvec{b}(\varvec{x}), \end{aligned}$$
(210)
$$\begin{aligned} \frac{\partial \varvec{v}}{\partial t}= & {} \Delta \varvec{v}-\varvec{c}(\varvec{x}), \end{aligned}$$
(211)

for

$$\begin{aligned} a(\varvec{x})= & {} \frac{1}{\mu } \left\{ (h(\varvec{x}+\varvec{u})-f_{q/p}(\varvec{x}) )\right. \nonumber \\{} & {} \left. +(h(\varvec{x}+\varvec{v})-g^{r/s}(\varvec{x})) \right\} , \end{aligned}$$
(212)
$$\begin{aligned} \varvec{b}(\varvec{x})= & {} \frac{1}{\lambda }\left\{ (h(\varvec{x}+\varvec{u})-f_{q/p}(\varvec{x}) )\nabla _{\varvec{u}} h(\varvec{x}+\varvec{u}) \right\} , \end{aligned}$$
(213)
$$\begin{aligned} \varvec{c}(\varvec{x})= & {} \frac{1}{\lambda }\left\{ (h(\varvec{x}+\varvec{v})-g^{r/s}(\varvec{x}) )\nabla _{\varvec{v}}h(\varvec{x}+\varvec{v}) \right\} \end{aligned}$$
(214)

yields the system of iterations

$$\begin{aligned} \frac{h^{(m+1)}-h^{(m)}}{\tau }= & {} \varvec{K}_nh^{(m+1)}-\frac{1}{\mu }a^{(m)}, \end{aligned}$$
(215)
$$\begin{aligned} \frac{\varvec{u}^{(m+1)}-\varvec{u}^{(m)}}{\tau }= & {} \left( \begin{array}{cc} 1,&{}0\\ 0,&{}1 \end{array}\right) \otimes \varvec{K}_n\varvec{u}^{(m+1)} -\frac{1}{\lambda }\varvec{b}^{(m)},\end{aligned}$$
(216)
$$\begin{aligned} \frac{\varvec{v}^{(m+1)}-\varvec{v}^{(m)}}{\tau }= & {} \left( \begin{array}{cc} 1,&{}0\\ 0,&{}1 \end{array}\right) \otimes \varvec{K}_n\varvec{v}^{(m+1)} -\frac{1}{\lambda }\varvec{c}^{(m)}, \end{aligned}$$
(217)

where

$$\begin{aligned} a^{(m)}= & {} (h(\varvec{x}+\varvec{u}^{(m)})^{(m)}-f_{q/p}(\varvec{x}) )\nonumber \\{} & {} +(h(\varvec{x}+\varvec{v}^{(m)})^{(m)}-g^{s/r}(\varvec{x})), \end{aligned}$$
(218)
$$\begin{aligned} \varvec{b}^{(m)}= & {} (h(\varvec{x}+\varvec{u}^{(m)})^{(m)}\nonumber \\{} & {} -f_{q/p}(\varvec{x}) )^{(m)} \nabla _{\varvec{u}} h(\varvec{x}+\varvec{u}^{(m)})^{(m)}, \end{aligned}$$
(219)
$$\begin{aligned} \varvec{c}^{(m)}= & {} (h(\varvec{x}+\varvec{v}^{(m)})^{(m)}\nonumber \\{} & {} -g_{s/r}(\varvec{x})) \nabla _{\varvec{v}}h(\varvec{x}+\varvec{v}^{(m)})^{(m)}. \end{aligned}$$
(220)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, K., Nozawa, K., Itoh, H. et al. Mathematical Properties of Pyramid-Transform-Based Resolution Conversion and Its Applications. J Math Imaging Vis 66, 115–153 (2024). https://doi.org/10.1007/s10851-023-01166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-023-01166-7

Keywords

Navigation