Log in

Preparation, characterization and evaluation of cefixime ternary inclusion complexes formated by mechanochemical strategy

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In an endeavor to ameliorate the solubility and subsequent oral bioavailability of Cefixime (CEF), a drug noted for its deficient water solubility, the formulation of ternary inclusion complexes was executed utilizing hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD), in conjunction with N-methyl-D-glucaminet (MG). This development was realized through the application of a mechanochemistry technique, acknowledged for its “green” credentials. The complexes' physicochemical attributes were meticulously examined through various analytical techniques: Fourier-transform infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Powder X-ray Diffractometry (XRD), and Scanning Electron Microscopy (SEM). Notably, the ternary complexes exhibited an uplift in apparent drug solubility, especially when juxtaposed with binary complexes. A prominent augmentation was perceived in the stability constant (Kc) and complexation efficiency (CE) when MG was integrated into the ternary complexes with HP-β-CD or SBE-β-CD. Further exploratory molecular docking and molecular dynamics studies underscored MG’s role in augmenting complex stability by serving as a bridge between CEF and cyclodextrins (CDs). The parallel artificial membrane permeability assay (PAMPA) indicated a conspicuous enhancement of CEF permeability in the ternary complexes relative to the control–free CEF. The particle size and zeta potential of the mechanochemically processed ternary complexes in liquid form were assessed using Dynamic Light Scattering (DLS). Moreover, in vivo evaluations revealed the ternary complexes to manifest notably superior oral bioavailability when compared to unadulterated CEF. Lastly, through the rapid storage assay, a heightened physicochemical stability was observed in the mechanochemically synthesized CEF ternary supramolecular inclusion complexes, compared to the pure drug, intimating a pioneering approach for the oral delivery of CEF, ensuring improved bioavailability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CD:

Cyclodextrin

CEF:

Cefixime

CE:

Complexation efficiency

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

FT-IR:

Fourier-transform infrared spectroscopy

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

Kc:

Stability constant

MD:

Molecular dynamics

MG:

N-methyl-d-glucaminet

PAMPA:

The parallel artificial membrane permeability assay

PDI:

Polydispersity index

PM:

Physical mixture

SBE-β-CD:

Sulfobutylether-β-cyclodextrin

SEM:

Scanning electron microscopy

XRD:

Powder X-ray diffractometry

References

  1. Brittain, D.C., Scully, B.E., Hirose, T., Neu, H.C.: The pharmacokinetic and bactericidal characteristics of oral cefixime. Clin. Pharmacol. Ther. 38, 590–594 (1985). https://doi.org/10.1038/clpt.1985.229

    Article  CAS  PubMed  Google Scholar 

  2. Brogden, R.N., Campoli-Richards, D.M.: Cefxime. A review of its antibacterial activity. Pharmacokinetic properties and therapeutic potential. Drugs 38, 524–550 (1989). https://doi.org/10.2165/00003495-198938040-00004

    Article  CAS  PubMed  Google Scholar 

  3. Talebpour, Z., Pourabdollahi, H., Rafati, H., Abdollahpour, A., Bashpur, Y., Aboul-Enein, H.Y.: Determination of cefixime by avalidated stability-indicating HPLC method and identification of its related substances by LC-MS/MS studies. Sci. Pharm. 81, 493–503 (2013). https://doi.org/10.3797/scipharm.1301-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jadhav, P., Petkar, B., Pore, Y., Kukarni, A., Burade, K.: Physicochemical and molecular modeling studies of cefixime–L-arginine–cyclodextrin ternary inclusion compounds. Carbohydr. Polym. 98, 1317–1325 (2013). https://doi.org/10.1016/j.carbpol.2013.07.070

    Article  CAS  PubMed  Google Scholar 

  5. Obaidat, R.M., Khanfar, M., Ghanma, R.A.: comparative solubility enhancement study of cefixime trihydrate using different dispersion techniques. AAPS Pharm Sci Tech. 20, 194 (2019). https://doi.org/10.1208/s12249-019-1395-y

    Article  CAS  Google Scholar 

  6. Pamudji, J.S., Mauludin, R., Nurhabibah, A.: Influence of β-cyclodextrin on cefixime stability in liquid suspension dosage form. Procedia Chem. 13, 119–127 (2014). https://doi.org/10.1016/j.proche.2014.12.015

    Article  CAS  Google Scholar 

  7. Mallick, S., Mondal, A., Sannigrahi, S.: Kinetic measurements of the hydrolytic degradation of cefixime: effect of Captisol complexation and water-soluble polymers. J. Pharm. Pharmacol. 60, 833–841 (2008). https://doi.org/10.1211/jpp.60.7.0004

    Article  CAS  PubMed  Google Scholar 

  8. Khan, Q., Siddique, M.I., Rasool, F., Naeem, M., Usman, M., Zaman, M.: Development and characterization of orodispersible film containing cefixime trihydrate. Drug Dev. Ind. Pharm. 46, 2070–2080 (2020). https://doi.org/10.1080/03639045.2020.1843477

    Article  CAS  PubMed  Google Scholar 

  9. Cirri, M., Mennini, N., Nerli, G., Rubia, J., Casalone, E., Melani, F., Maestrelli, F., Mura, P.: Combined use of cyclodextrins and amino acids for the development of cefixime oral solutions for pediatric use. Pharmaceutics 13, 1932 (2021). https://doi.org/10.3390/pharmaceutics13111923

    Article  CAS  Google Scholar 

  10. Agrawal, G.P., Maheshwari, R.K., Mishra, P.: Solubility enhancement of cefixime trihydrate by solid dispersions using hydrotropic solubilization technique and their characterization. Braz. J. Pharm. Sci. (2022). https://doi.org/10.1590/s2175-97902020000118553

    Article  Google Scholar 

  11. Saifullah, S., Kanwal, T., Ullah, S., Kawish, M., Habib, S.M., Ali, I., Munir, A., Imran, M., Shah, M.R.: Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids 235, 105052 (2021). https://doi.org/10.1016/j.chemphyslip.2021.105052

    Article  CAS  PubMed  Google Scholar 

  12. Mahmood, A., Khan, L., Ijaz, M., Nazir, I., Naseem, M., Tahir, M.A., Aamir, M.N., Rehman, M.U., Asim, M.H.: Enhanced intestinal permeability of cefixime by self-emulsifying drug delivery system: in-vitro and ex-vivo characterization. Molecules 28, 2827 (2023). https://doi.org/10.3390/molecules28062827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balya, H., Radhakrishnan, A., Jabaris, S.L., Gopal, D.V.R.S., Kuppusamy, G., Seetharaman, S.: Fabrication of novel bio-compatible cefixime nanoparticles using chitosan and Azadirachta indica fruit mucilage as natural polymers. J. Drug Deliv. Sci. Technol. 66, 102750 (2021). https://doi.org/10.1016/j.jddst.2021.102750

    Article  CAS  Google Scholar 

  14. Mahjoub, M.A., Ebrahimnejad, P., Shahlaee, F., Ebrahimi, P., Sadeghi-Ghadi, Z.: Preparation and optimization of controlled release nanoparticles containing cefixime using central composite design: an attempt to enrich its antimicrobial activity. Curr. Drug Deliv. 19, 369–378 (2022). https://doi.org/10.2174/1567201818666210726160956

    Article  CAS  PubMed  Google Scholar 

  15. Haghighi, D.M., Faghihi, H., Darabi, M., Mirmoeini, M.S., Vatanara, A.: Spray freeze drying to solidify nanosuspension of cefxime into inhalable microparticles. Drug J. Pharm. Sci. 30, 17–27 (2022). https://doi.org/10.1007/s40199-021-00426-4

    Article  CAS  Google Scholar 

  16. Kamran, M., Khan, M.A., Rehman, M., Shafique, M., Khan, A., Ahmad, S.: Binary solid lipid nanosuspension containing cefixime: preparation, characterization and comparative in-vivo evaluation. Beilstein Arch. 39, 762–770 (2019). https://doi.org/10.3762/bxiv.2019.109.v1

    Article  CAS  Google Scholar 

  17. Ata, S., Rasool, A., Islam, A., Bibi, I., Rizwan, M., Azeem, M.K., Qureshi, A.U.R., Iqbal, M.: Loading of cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int. J. Biol. Macromol. 155, 1236–1244 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.091

    Article  CAS  PubMed  Google Scholar 

  18. Chaturvedi, P., Soni, P.K., Paswan, S.K.: Designing and development of gastroretentive mucoadhesive microspheres of cefixime trihydrate using spray dryer. Int. J. App. Pharm. 15, 185–193 (2023). https://doi.org/10.22159/ijap.2023v15i2.45399

    Article  CAS  Google Scholar 

  19. Razdan, K., Sahajpal, N.S., Singh, K., Singh, H., Singh, H., Jain, S.K.: Formulation of sustained-release microspheres of cefixime with enhanced oral bioavailability and antibacterial potential. Ther. Deliv. 10, 769–782 (2019). https://doi.org/10.4155/tde-2019-0057

    Article  CAS  PubMed  Google Scholar 

  20. Wupper, S., Luersen, K., Rimbach, G.: Cyclodextrins, natural compounds, and plant bioactives–a nutritional perspective. Biomolecules 11, 401 (2021). https://doi.org/10.3390/biom11030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Periasamy, R.: Cyclodextrin-based molecules as hosts in the formation of supramolecular complexes and their practical applications—a review. J Carbohyd Chem. 40, 135–155 (2021). https://doi.org/10.1080/07328303.2021.1967970

    Article  CAS  Google Scholar 

  22. Jacob, S., Nair, A.B.: Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev. Res. 79, 201–217 (2018). https://doi.org/10.1002/ddr.21452

    Article  CAS  PubMed  Google Scholar 

  23. Khushboo, L., Anuj, G.: Inclusion complex of chrysin with hydroxypropyl-β-cyclodextrin (HP-β-CD) preparation, characterization, and dissolution study. BioNanoScience. 13, 616–624 (2023). https://doi.org/10.1007/s12668-023-01106-0

    Article  Google Scholar 

  24. Prachi, P., Prabha, S., Arati, P., Sonika, G.: Development and optimization of HP-β-CD inclusion complex-based fast orally disintegrating tablet of pitavastatin calcium. J. Pharm. Innov. 17, 993–1010 (2022). https://doi.org/10.1007/s12247-022-09661-x

    Article  Google Scholar 

  25. Pardeshi, C.V., Kothawade, R.V., Markad, A.R., Pardeshi, S.R., Kulkarni, A.D., Chaudhari, P.J., Longhi, M., Dhas, N., Naik, J.B., Surana, S.J., Garcia, M.C.: Sulfobutylether-β-cyclodextrin: a functional biopolymer for drug delivery applications. Carbohydr. Polym. 301, 120347 (2023). https://doi.org/10.1016/j.carbpol.2022.120347

    Article  CAS  PubMed  Google Scholar 

  26. Soe, H.M.H., Chamni, S., Mahalapbutr, P., Kongtaworn, N., Rungrotmongkol, T., Jansook, P.: The investigation of binary and ternary sulfobutylether-β-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state. Carbohydr. Res. 498, 108190 (2020). https://doi.org/10.1016/j.carres.2020.108190

    Article  CAS  PubMed  Google Scholar 

  27. Lateh, L., Kaewnopparat, N., Yuenyongsawad, S.: Panichayupakaranantract using a ternary inclusion complex system: Preparation, characterization, and anti-cancer activity. Food Chem. 368, 130827 (2022). https://doi.org/10.1016/j.foodchem.2021.130827

    Article  CAS  PubMed  Google Scholar 

  28. Suvarna, V., Gujar, P., Murahari, M., Sharma, D., Chamariya, R.: Supramolecular ternary inclusion complexes of Irbesartan with hydroxypropyl-beta-cyclodextrin. J. Drug Deliv. Sci. Technol. 67, 102964 (2022). https://doi.org/10.1016/j.jddst.2021.102964

    Article  CAS  Google Scholar 

  29. Londhe, V.Y., Pawar, A., Kundaikar, H.: Studies on spectral characterization and solubility of hydroxypropyl-β-cyclodextrin/iloperidone binary and ternary complexes using different auxiliary agents. J. Mol. Struct. 1220, 128615 (2020). https://doi.org/10.1016/j.molstruc.2020.128615

    Article  CAS  Google Scholar 

  30. Zhang, Q.H., Ren, W., Dushkin, A.V., Su, W.K.: Preparation, characterization, in vitro and in vivo studies of olmesartan medoxomil in a ternary solid dispersion with N-methyl-D-glucamine and hydroxypropyl-β-cyclodextrin. J Drug Deliv Sci Tec. 56, 101546 (2020). https://doi.org/10.1016/j.jddst.2020.101546

    Article  CAS  Google Scholar 

  31. Cuccu, F., De Luca, L., Delogu, F., Colacino, E., Solin, N., Mocci, R., Porcheddu, A.: Mechanochemistry: new tools to navigate the uncharted territory of “Impossible” reactions. Chem Sus Chem. 15, e202200362 (2022). https://doi.org/10.1002/cssc.202200362

    Article  CAS  Google Scholar 

  32. Ardila-Fierro, K.J., Hernandez, J.G.: Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. Chem. Sus Chem. 14, 2145–2162 (2021). https://doi.org/10.1002/cssc.202100478

    Article  CAS  Google Scholar 

  33. Li, L., Wang, G.W.: Mechanochemical solvent-free synthesis of indenones from aromatic carboxylic acids and alkynes. J. Org. Chem. 86, 14102–14112 (2021). https://doi.org/10.1021/acs.joc.1c01472

    Article  CAS  PubMed  Google Scholar 

  34. Wu, C.Y., Ying, T., Fan, H.Q., Hu, C.H., Su, W.K., Yu, J.B.: C-4 regioselective alkylation of pyridines driven by mechanochemically activated magnesium metal. Org. Lett. 25, 2531–2536 (2023). https://doi.org/10.1021/acs.orglett.3c00684

    Article  CAS  PubMed  Google Scholar 

  35. Rincon, E., Balu, A.M., Luque, R.: Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: a comparative study with other traditional and green novel techniques. Ind. Crop Prod. 141, 1–6 (2019). https://doi.org/10.1016/j.indcrop.2019.111805

    Article  CAS  Google Scholar 

  36. Zhu, P.X., Hao, M.Y., Su, F., Xu, W.H., Zhang, Q.H., Su, W.K., Adams, E.: Mechanochemical-assisted extraction of essential oils from Citrus aurantium L. var. amara Engl. Ind. Crop Prod. 188, 1–7 (2022). https://doi.org/10.1016/j.indcrop.2022.115703

    Article  CAS  Google Scholar 

  37. Ferreira, P.O., Almeida, A.C., Costa, G.P., Torquetti, C., Baptista, J.A., Eusébio, M.E.S., Caires, F.J., Castro, R.A.E.: Norfloxacin cocrystals: mechanochemical synthesis and scale-up viability through solubility studies. J. Pharm. Sci. 112, 2230–2239 (2023). https://doi.org/10.1016/j.xphs.2023.03.003

    Article  CAS  PubMed  Google Scholar 

  38. Sun, X.R., Zhu, D.B., Cai, Y., Shi, G.B., Gao, M.S., Zheng, M.Z.: One-step mechanochemical preparation and prominent antitumor activity of SN-38 self-micelle solid dispersion. Int. J. Nanomed. 14, 2115–2126 (2021). https://doi.org/10.2147/IJN.S193783

    Article  Google Scholar 

  39. Xu, W.H., Yang, J.L., Gu, X.Y., Su, W.J., Pu, F.X., **e, Z.F., **, K.L., Su, W.K., Mao, L.C.: Mechanochemical prepared ibuprofen-Polygonatum sibiricum polysaccharide drug delivery system for enhanced bioactivity with reduced renal injury induced by NSAIDs. Drug Deliv. 29, 351–363 (2022). https://doi.org/10.1080/10717544.2022.2026533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong, R.P., Zhu, X.Y., Meteleva, E.S., Polyakov, N.E., Khvostov, M.V., Baev, D.S., Tolstikova, T.G., Dushkin, A.V., Su, W.K.: Mechanochemical preparation and properties of water-soluble intermolecular complexes of arabinogalactan and disodium glycyrrhizin with atorvastatin calcium. Drug Deliv. Transl. Res. 8, 1200–1213 (2018). https://doi.org/10.1007/s13346-018-0565-x

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigo, E., Wiechert, R., Walter, M.W., Braje, W., Geneste, H.: One-step hydroxylation of aryl and heteroaryl fluorides using mechanochemistry. Green Chem. 24, 1469–1473 (2022)

    Article  CAS  Google Scholar 

  42. Pagola, S.: Outstanding advantages, current drawbacks, and significant recent developments in mechanochemistry: a perspective view. Crystals 13, 124 (2023). https://doi.org/10.3390/cryst13010124

    Article  CAS  Google Scholar 

  43. Nart, V., França, M.T., Anzilaggo, D., Riekes, M.K., Kratz, J.M., de Campos, C.E., Simões, C.M., Stulzer, H.K.: Ball-milled solid dispersions of BCS class IV drugs: impact on the dissolution rate and intestinal permeability of acyclovir. Mater. Sci. Eng. C 53, 229–238 (2015). https://doi.org/10.1016/j.msec.2015.04.028

    Article  CAS  Google Scholar 

  44. Zhang, Q.H., Feng, Z.M., Ren, W., Zhao, Y.C., Dushkin, A.V., Su, W.K.: Preparation of olmesartan medoxomil solid dispersion with sustained release performance by mechanochemical technology. Drug Deliv. Transl. Res. 12, 589–602 (2021). https://doi.org/10.1007/s13346-021-00959-w

    Article  CAS  PubMed  Google Scholar 

  45. Kawasaki, R., Kawamura, S., Kodama, T., Yamana, K., Maeda, A., Yimiti, D., Miyaki, S., Hino, S., Ozawa, N., Nishimura, T., Kawamoto, S., Ikeda, A.: Development of a water-dispersible supramolecular complex of polyphenol with polypeptides for attenuation of the allergic response using a mechanochemical strategy. Macromol. Biosci. 23, e2200462 (2023). https://doi.org/10.1002/mabi.202200462

    Article  CAS  PubMed  Google Scholar 

  46. Higuchi, T.A., Connors, K.A.: Phase-solubility techniques. In: Reilley, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, ume 4, pp. 117–212. Wiley, New York (1965)

    Google Scholar 

  47. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007). https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  48. Suvarna, V., Thorat, S., Nayak, U., Sherje, A., Murahari, M.: Host-guest interaction study of Efavirenz with hydroxypropyl-β-cyclodextrin and L-arginine by computational simulation studies: Preparation and characterization of supramolecular complexes. J. Mol. Liq. 259, 55–64 (2018). https://doi.org/10.1016/j.molliq.2018.02.131

    Article  CAS  Google Scholar 

  49. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, T., Zhao, Q., Su, Y., Ouyang, D.F.: Investigation of molecular aggregation mechanism of glipizide/cyclodextrin complexation by combined experimental and molecular modeling approaches. Asian J. Pharm. Sci. 14, 609–620 (2019). https://doi.org/10.1016/j.ajps.2018.10.008

    Article  PubMed  Google Scholar 

  51. Mura, P., Maestrelli, F., Cirri, M., Furlanetto, S., Pinzauti, S.: Differential scanning calorimetry as an analytical tool in the study of drug-cyclodextrin interactions. J. Therm. Anal. Calorim. 73, 635–646 (2003). https://doi.org/10.1023/A:1025494500283

    Article  CAS  Google Scholar 

  52. Aloisioa, C., de Oliveira, A.G., Longhi, M.: Solubility and release modulation effect of sulfamerazine ternary complexes with cyclodextrins and meglumine. J. Pharm. Biomed. Anal. 100, 64–73 (2014). https://doi.org/10.1016/j.jpba.2014.07.008

    Article  CAS  Google Scholar 

  53. Dushkin, A.V., Tolstikova, T.G., Khvostov, M.V., Tolstikov, G.A.: Complexes of polysaccharides and glycyrrhizic acid with drug molecules. Mechanochemical synthesis and pharmacological activity. In: Karunaratne, D.N. (ed.) The Complex World of Polysaccharides, vol. 22, pp. 573–602. InTech, Rijeka (2012). https://doi.org/10.5772/48095

    Chapter  Google Scholar 

  54. Sahu, K.M., Patra, S., Swain, S.K.: Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: a review. Int. J. Biol. Macromol. 240, 124338 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124338

    Article  CAS  PubMed  Google Scholar 

  55. Kong, R.P., Zhu, X.Y., Meteleva, E.S., Chistyachenko, Y.S., Suntsova, L.P., Polyakov, N.E., Khvostov, M.V., Baev, D.S., Tolstikova, T.G., Yu, J.M., Dushkin, A.V., Su, W.K.: Enhanced solubility and bioavailability of simvastatin by mechanochemically obtained complexes. Int. J. Pharmaceutics. 534, 108–118 (2017). https://doi.org/10.1016/j.ijpharm.2017.10.011

    Article  CAS  Google Scholar 

  56. Kong, R.P., Zhu, X.Y., Meteleva, E.S., Dushkin, A.V., Su, W.K.: Physicochemical characteristics of the complexes of simvastatin and atorvastatin calcium with hydroxypropyl-β-cyclodextrin produced by mechanochemical activation. Drug Deliv. Sci. Technol. 46, 436–445 (2018). https://doi.org/10.1016/j.jddst.2018.05.018

    Article  CAS  Google Scholar 

  57. Alvi, Z., Akhtar, M., Mahmood, A., Ur-Rahman, N., Nazir, I., Sadaquat, H., Ijaz, M., Syed, S.K., Waqas, M.K., Wang, Y.: Enhanced oral bioavailability of epalrestat SBE7-β-CD complex loaded chitosan nanoparticles: preparation, characterization and in-vivo pharmacokinetic evaluation. Int. J. Nanomed. 16, 8353–8373 (2021). https://doi.org/10.2147/IJN.S339857

    Article  CAS  Google Scholar 

  58. Kerns, E.H., Di, L., Petusky, S., Farris, M., Ley, R., Jupp, P.: Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci. 93, 1440–1453 (2004). https://doi.org/10.1002/jps.20075

    Article  CAS  PubMed  Google Scholar 

  59. Loftsson, T., Konrádsdóttir, F., Másson, M.: Development and evaluation of an artificial membrane for determination of drug availability. Int. J. Pharm. 326, 60–68 (2006). https://doi.org/10.1016/j.ijpharm.2006.07.009

    Article  CAS  PubMed  Google Scholar 

  60. Brewster, M.E., Noppe, M., Peeters, J., Loftsson, T.: Effect of the unstirred water layer on permeability enhancement by hydrophilic cyclodextrins. Int. J. Pharm. 342, 250–253 (2007). https://doi.org/10.1016/j.ijpharm.2007.04.029

    Article  CAS  PubMed  Google Scholar 

  61. Chougule, M.B., Patel, A.R., Patlolla, R., Jackson, T., Singh, M.: Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: Implications for intestinal absorption. J. Drug Target. 22, 498–508 (2014). https://doi.org/10.3109/1061186X.2014.894046

    Article  CAS  PubMed  Google Scholar 

  62. Onoue, S., Nakamura, T., Uchida, A., Ogawa, K., Yuminoki, K., Hashimoto, N., Hiza, A., Tsukaguchi, Y., Asakawa, T., Kan, T., Yamada, S.: Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polyethoxylated flavone, with improved hepatoprotective effects. Eur. J. Pharm. Sci. 49, 453–460 (2013). https://doi.org/10.1016/j.ejps.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  63. Banik, S., Sato, H., Onoue, S.: Self-micellizing solid dispersion of atorvastatin with improved physicochemical stability and oral absorption. Drug Deliv. Sci. Technol. 68, 103065 (2022). https://doi.org/10.1016/j.jddst.2021.103065

    Article  CAS  Google Scholar 

  64. Loftsson, T., Vogensen, S.B., Brewster, M.E., Konrádsdóttir, F.: Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci. 96, 2532–2546 (2007). https://doi.org/10.1002/jps.20992

    Article  CAS  PubMed  Google Scholar 

  65. Rong, W.T., Lu, Y.P., Tao, Q., Guo, M., Lu, Y., Ren, Y., Yu, S.Q.: Hydroxypropyl-sulfobutyl-β-cyclodextrin improves the oral bioavailability of edaravone by modulating drug efflux pump of enterocytes. J. Pharm. Sci. Feb. 103, 730–742 (2014). https://doi.org/10.1002/jps.23807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Jiangsu Food and Pharmaceutical Science College (Grant No. JSFP2019002), by grants HAB202240 from the Huai'an Municipal Science and Technology Bureau in Jiangsu, and the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No. 23KJA350001). We would like to thank Shuang Zheng (Jiangsu Food and Pharmaceutical Science College) for help with the bioavailability experiment.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RPK, LWX, LZ and YRS. The first draft of the manuscript was written by RPK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rui** Kong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval and consent to participate

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, R., Xu, L., Zhu, L. et al. Preparation, characterization and evaluation of cefixime ternary inclusion complexes formated by mechanochemical strategy. J Incl Phenom Macrocycl Chem 104, 51–71 (2024). https://doi.org/10.1007/s10847-023-01214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01214-0

Keywords

Navigation