Log in

Influence of CoFe2O4 particle size on the development of in-situ phases and magnetic properties of ex-situ combustion derived ferrite-BaTiO3 composite

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The evolved in-situ phases may tune the structural parameters and magnetic properties of the ferrite-BaTiO3 based composite. Here, CoFe2O4 is prepared, and its particle size is modified by calcination temperature. Further, it investigates the influence of CoFe2O4 particle size on the development of in-situ phases in ferrite-BaTiO3 based composite prepared via an ex-situ gel- combustion and studies its structural parameters as well as magnetic properties at different calcination temperatures. In-situ phases such as plate-like morphologies of barium hexaferrite and hexagonal barium titanate are evolved along with polyhedral barium titanate and cobalt ferrite in these composites, but the development of these in-situ phases is found to be dependent on the particle size of CoFe2O4 as well as calcination temperature of the composite powders. Structural parameters, crystallite size, particle size, weight% of phases, and M-H loop as a function of the calcination temperature of these composites have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files]. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. D.K. Pradhan, S. Kumari, P.D. Rack, Magnetoelectric Composites: Applications, Coupling Mechanisms, and, F. Directions, Nanomaterials. 10 (2020) 2072. https://doi.org/10.3390/nano10102072

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature. 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  PubMed  Google Scholar 

  4. J.F. Scott, Multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868

    Article  CAS  PubMed  Google Scholar 

  5. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status and perspectives of Multiferroic Magnetoelectric Composite materials and applications. Actuators. 5, 9 (2016). https://doi.org/10.3390/act5010009

    Article  Google Scholar 

  6. M. Saadat-Safa, V. Nayyeri, M. Khanjarian, M. Soleimani, O.M. Ramahi, Full Characterization of Magneto-Dielectric Materials Using a Novel CSRR Based Sensor, in: 2018 9th Int. Symp. Telecommun., IEEE, 2018: pp. 442–446. https://doi.org/10.1109/ISTEL.2018.8660979

  7. G. Schileo, Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Prog Solid State Chem. 41, 87–98 (2013). https://doi.org/10.1016/j.progsolidstchem.2013.09.001

    Article  CAS  Google Scholar 

  8. V.G. Shrimali, K. Gadani, K.N. Rathod, B. Rajyaguru, A.D. Joshi, D.D. Pandya, P.S. Solanki, N.A. Shah, Sintering effect and magnetodielectric studies on nanostructured BiFe0.95Co0.05O3. Mater. Chem. Phys. 228, 98–109 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.040

    Article  CAS  Google Scholar 

  9. T. Ramesh, V. Madhavi, P. Neelima, K.N. Kumar, N.B. Reddy, G.V. Zyryanov, Effect of sintering temperature on the magnetodielectric performance of nickel ferrite, in: 2022: p. 020064. https://doi.org/10.1063/5.0068977

  10. Z. Zeng, H. Wu, C. Zhou, X. Qin, J. He, C. Ji, X. Deng, R. Gao, C. Fu, W. Cai, G. Chen, Z. Wang, X. Lei, Effect of sintering temperature on magnetoelectric properties of PbTiO 3 /NiFe 2 O 4 composite ceramics. J. Asian Ceram. Soc. 8, 1206–1215 (2020). https://doi.org/10.1080/21870764.2020.1833416

    Article  Google Scholar 

  11. M. Lan, Z. Zeng, Q. Zhang, G. Sun, H. Wu, H. Ao, X. Deng, R. Gao, W. Cai, Z. Wang, C. Fu, X. Lei, G. Chen, Effect of sintering temperature on magnetoelectric properties of barium ferrite ceramics. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00679-y

    Article  Google Scholar 

  12. C. Elena Ciomaga, A. Maria Neagu, M. Valentin Pop, M. Airimioaei, S. Tascu, G. Schileo, C. Galassi, L. Mitoseriu, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013). https://doi.org/10.1063/1.4792494

    Article  CAS  Google Scholar 

  13. M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (ba, ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 32164 (2016). https://doi.org/10.1038/srep32164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Pachari, S.K. Pratihar, B.B. Nayak, Magnetocapacitance response in ex-situ combustion derived BaTiO3-ferrite magnetodielectric composite. IEEE Trans. Magn. 58, 1–11 (2022). https://doi.org/10.1109/TMAG.2022.3208707

    Article  Google Scholar 

  15. S. Pachari, S.K. Pratihar, B.B. Nayak, Microstructure and magnetoresistance driven magnetocapacitance in ex-situ combustion derived BaTiO3-CoFe2O4 bulk magnetodielectric composites. J. Magn. Magn. Mater. 561, 169735 (2022). https://doi.org/10.1016/j.jmmm.2022.169735

    Article  CAS  Google Scholar 

  16. H. Ke, H. Zhang, J. Zhou, D. Jia, Y. Zhou, Room-temperature multiferroic and magnetodielectric properties of SrTiO3/NiFe2O4 composite ceramics. Ceram. Int. 45, 8238–8242 (2019). https://doi.org/10.1016/j.ceramint.2019.01.127

    Article  CAS  Google Scholar 

  17. Z. Fang, S.G. Lu, F. Li, S. Datta, Q.M. Zhang, M.E. Tahchi, Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect. Appl. Phys. Lett. 95, 112903 (2009). https://doi.org/10.1063/1.3231614

    Article  CAS  Google Scholar 

  18. D.K. Pradhan, S. Sahoo, S.K. Barik, V.S. Puli, P. Misra, R.S. Katiyar, Studies on magnetoelectric coupling in PFN-NZFO composite at room temperature. J. Appl. Phys. 115, 194105 (2014). https://doi.org/10.1063/1.4875661

    Article  CAS  Google Scholar 

  19. S. Pachari, S.K. Pratihar, B.B. Nayak, Enhanced magneto-capacitance response in BaTiO 3 –ferrite composite systems. RSC Adv. 5, 105609–105617 (2015). https://doi.org/10.1039/C5RA16742F

    Article  CAS  Google Scholar 

  20. H. Ryu, P. Murugavel, J.H. Lee, S.C. Chae, T.W. Noh, Y.S. Oh, H.J. Kim, K.H. Kim, J.H. Jang, M. Kim, C. Bae, J.-G. Park, Magnetoelectric effects of nanoparticulate pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films. Appl. Phys. Lett. 89, 102907 (2006). https://doi.org/10.1063/1.2338766

    Article  CAS  Google Scholar 

  21. P. Esther Rubavathi, L. Venkidu, M. Veera Gajendra Babu, R. Venkat Raman, B. Bagyalakshmi, S.M. Abdul Kader, K. Baskar, M. Muneeswaran, N.V. Giridharan, B. Sundarakannan, Structure, morphology and magnetodielectric investigations of BaTi1 – xFexO3 – δ ceramics. J. Mater. Sci. Mater. Electron. 30, 5706–5717 (2019). https://doi.org/10.1007/s10854-019-00864-6

    Article  CAS  Google Scholar 

  22. S. Rajan, P.M.M. Gazzali, L. Okrasa, G. Chandrasekaran, Multiferroic and magneto-dielectric properties in Fe doped BaTiO3. J. Mater. Sci. Mater. Electron. 29, 11215–11228 (2018). https://doi.org/10.1007/s10854-018-9208-8

    Article  CAS  Google Scholar 

  23. P.R. Mandal, T.K. Nath, Enhanced magnetocapacitance and dielectric property of Co 0.65Zn0.35Fe2O4-PbZr 0.52Ti0.48O3 magnetodielectric composites. J. Alloys Compd. 599, 71–77 (2014). https://doi.org/10.1016/j.jallcom.2014.02.036

    Article  CAS  Google Scholar 

  24. N. Shara Sowmya, A. Srinivas, K. Venu Gopal Reddy, J. Paul Praveen, D. Das, S. Dinesh Kumar, V. Subramanian, S.V.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT-0.5BCT) – (100-x) NiFe2O4 [x = 90 – 70 wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017). https://doi.org/10.1016/j.ceramint.2016.11.054

    Article  CAS  Google Scholar 

  25. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd. 795, 501–512 (2019). https://doi.org/10.1016/j.jallcom.2019.05.013

    Article  CAS  Google Scholar 

  26. L. He, D. Zhou, H. Yang, Y. Niu, F. **ang, H. Wang, Low-temperature sintering Li 2 MoO 4 /Ni 0.5 zn 0.5 Fe 2 O 4 Magneto-Dielectric composites for high-frequency application. J. Am. Ceram. Soc. 97, 2552–2556 (2014). https://doi.org/10.1111/jace.12981

    Article  CAS  Google Scholar 

  27. P.S.V.L. Mathe, Effect of co-sintering time on magnetoelectric response of Pb 0.895 Sr 0.06 La 0.03 (zr 0.56,Ti 0.44)o 3 multilayer–Ni 0.6 zn 0.4 Fe 2 O 4 composite fabricated by tape casting. J. Appl. Phys. 126, 084106 (2019). https://doi.org/10.1063/1.5099299

    Article  CAS  Google Scholar 

  28. J. Yu, L. Bai, R. Gao, Effect of sintering temperature on magnetoelectric coupling in 0.2Ni0.9Zn0.1Fe2O4-0.8Ba0.9Sr0.1TiO3 composite ceramics. Process. Appl. Ceram. 14, 336–345 (2020). https://doi.org/10.2298/PAC2004336Y

    Article  CAS  Google Scholar 

  29. Y. Deng, J. Zhou, D. Wu, Y.Y. Du, M. Zhang, D. Wang, H. Yu, S. Tang, Y.Y. Du, Three-dimensional phases-connectivity and strong magnetoelectric response of self-assembled feather-like CoFe2O4–BaTiO3 nanostructures. Chem. Phys. Lett. 496, 301–305 (2010). https://doi.org/10.1016/j.cplett.2010.07.048

    Article  CAS  Google Scholar 

  30. S. Haffer, C. Lüder, T. Walther, R. Köferstein, S.G. Ebbinghaus, M. Tiemann, A synthesis concept for a nanostructured CoFe2O4/BaTiO3 composite: towards multiferroics. Microporous Mesoporous Mater. 196, 300–304 (2014). https://doi.org/10.1016/j.micromeso.2014.05.023

    Article  CAS  Google Scholar 

  31. K. Raidongia, A. Nag, A. Sundaresan, C.N.R. Rao, Multiferroic and magnetoelectric properties of core-shell CoFe2 O4 @ BaTiO3 nanocomposites. Appl. Phys. Lett. 97 (2010). https://doi.org/10.1063/1.3478231

  32. V. Corral-Flores, D. Bueno-Baques, D. Carrillo-Flores, J.A. Matutes-Aquino, Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99 (2006). https://doi.org/10.1063/1.2165147

  33. M.M. Selvi, P. Manimuthu, K.S. Kumar, C. Venkateswaran, Magnetodielectric properties of CoFe2O4-BaTiO 3 core-shell nanocomposite. J. Magn. Magn. Mater. 369, 155–161 (2014). https://doi.org/10.1016/j.jmmm.2014.06.039

    Article  CAS  Google Scholar 

  34. M.D. Rather, R. Samad, B. Want, Improved magnetoelectric effect in ytterbium doped BaTiO3 –CoFe2O4 particulate multiferroic composites. J. Alloys Compd. 755, 89–99 (2018). https://doi.org/10.1016/j.jallcom.2018.04.289

    Article  CAS  Google Scholar 

  35. H. Wu, R. Xu, C. Zhou, S. **ng, Z. Zeng, H. Ao, W. Li, X. Qin, R. Gao, Effect of core size on the magnetoelectric properties of Cu0.8Co0.2Fe2O4@Ba0.8Sr0.2TiO3 ceramics. J. Phys. Chem. Solids. 160, 110314 (2022). https://doi.org/10.1016/j.jpcs.2021.110314

    Article  CAS  Google Scholar 

  36. L.V. Leonel, A. Righi, W.N. Mussel, J.B. Silva, N.D.S. Mohallem, Structural characterization of barium titanate–cobalt ferrite composite powders. Ceram. Int. 37, 1259–1264 (2011). https://doi.org/10.1016/j.ceramint.2011.01.017

    Article  CAS  Google Scholar 

  37. S. Mazumder, G. Battacharyya, Magnetoelectric behavior in in situ grown piezoelectric and piezomagnetic composite-phase system. Mater. Res. Bull. 38, 303–310 (2003). https://doi.org/10.1016/S0025-5408(02)01048-6

    Article  CAS  Google Scholar 

  38. J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974). https://doi.org/10.1007/BF00540770

    Article  Google Scholar 

  39. D. Ghosh, H. Han, J.C. Nino, G. Subhash, J.L. Jones, Synthesis of BaTiO3-20wt%CoFe2O4 nanocomposites via spark plasma sintering. J. Am. Ceram. Soc. 95, 2504–2509 (2012). https://doi.org/10.1111/j.1551-2916.2012.05221.x

    Article  CAS  Google Scholar 

  40. S. Mohan, P.A. Joy, Magnetic properties of sintered CoFe 2 O 4 –BaTiO 3 particulate magnetoelectric composites. Ceram. Int. 45, 12307–12311 (2019). https://doi.org/10.1016/j.ceramint.2019.03.145

    Article  CAS  Google Scholar 

  41. M.T. Buscaglia, V. Buscaglia, L. Curecheriu, P. Postolache, L. Mitoseriu, A.C. Ianculescu, B.S. Vasile, Z. Zhe, P. Nanni, Fe2O3@BaTiO3 core-shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases. Chem. Mater. 22, 4740–4748 (2010). https://doi.org/10.1021/cm1011982

    Article  CAS  Google Scholar 

  42. H. Zheng, W.J. Weng, G.R. Han, P.Y. Du, Crucial role of percolation transition on the formation and electromagnetic properties of BaTiO3/Ni0.5Zn0.47Fe2O4 ceramic composites, Ceram. Int. 41, 1511–1519 (2015). https://doi.org/10.1016/j.ceramint.2014.09.086

    Article  CAS  Google Scholar 

  43. H. Yang, H. Wang, L. He, X. Yao, Hexagonal BaTiO 3/Ni 0.8Zn 0.2Fe 2O 4 composites with giant dielectric constant and high permeability. Mater. Chem. Phys. 134, 777–782 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.068

    Article  CAS  Google Scholar 

  44. Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, Fabrication, structure and properties of BaTiO3-BaFe12O19 composites with core-shell heterostructure. J. Eur. Ceram. Soc. 35, 3513–3520 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.016

    Article  CAS  Google Scholar 

  45. M. Bichurin, V. Petrov, Modeling of Magnetoelectric Effects in Composites (Springer Netherlands, Dordrecht, 2014). https://doi.org/10.1007/978-94-017-9156-4

    Book  Google Scholar 

  46. X.K. Wei, Y.T. Su, Y. Sui, Q.H. Zhang, Y. Yao, C.Q. **, R.C. Yu, Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO 3. J. Appl. Phys. 110, 114112 (2011). https://doi.org/10.1063/1.3658813

    Article  CAS  Google Scholar 

  47. A. Zorko, M. Pregelj, M. Gomilšek, Z. Jagličić, D. Pajić, M. Telling, I. Arčon, I. Mikulska, M. Valant, Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate. Sci. Rep. 5, 7703 (2015). https://doi.org/10.1038/srep07703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Gaffar, A. Kumar, U. Riaz, Synthesis techniques and advance applications of spinel ferrites: a short review. J. Electroceram. (2023). https://doi.org/10.1007/s10832-023-00333-x

    Article  Google Scholar 

  49. P.P. Bardapurkar, S.N. Dalvi, V.D. Joshi, P.S. Solanki, V.R. Rathod, N.A. Shah, N.P. Barde, Effect of silica matrix on structural and optical properties of cobalt ferrite nanoparticles. Results Surf. Interfaces. 8, 100081 (2022). https://doi.org/10.1016/j.rsurfi.2022.100081

    Article  Google Scholar 

  50. P.P. Bardapurkar, S.S. Shewale, S.A. Arote, S.S. Pansambal, N.P. Barde, Effect of precursor pH on structural, magnetic and catalytic properties of CoFe2O4@SiO2 green nanocatalyst. Res. Chem. Intermed. 47, 1919–1939 (2021). https://doi.org/10.1007/s11164-020-04366-7

    Article  CAS  Google Scholar 

  51. A. Guzu, C.E. Ciomaga, M. Airimioaei, L. Padurariu, L.P. Curecheriu, I. Dumitru, F. Gheorghiu, G. Stoian, M. Grigoras, N. Lupu, M. Asandulesa, L. Mitoseriu, Functional properties of randomly mixed and layered BaTiO3 - CoFe2O4 ceramic composites close to the percolation limit. J. Alloys Compd. 796, 55–64 (2019). https://doi.org/10.1016/j.jallcom.2019.05.068

    Article  CAS  Google Scholar 

  52. P.P. Bardapurkar, N.P. Barde, D.P. Thakur, K.M. Jadhav, G.K. Bichile, Effect of Ba2+ – Sr2 + co-substitution on the structural and dielectric properties of lead titanate. J. Electroceram. 29, 62–70 (2012). https://doi.org/10.1007/s10832-012-9741-4

    Article  CAS  Google Scholar 

  53. T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe 2 O 4 nanoparticles. J. Alloys Compd. 716, 171–183 (2017). https://doi.org/10.1016/j.jallcom.2017.05.048

    Article  CAS  Google Scholar 

  54. B. Purnama, A.T. Wijayanta, Suharyana, Effect of calcination temperature on structural and magnetic properties in cobalt ferrite nano particles. J. King Saud Univ. - Sci. 31, 956–960 (2019). https://doi.org/10.1016/j.jksus.2018.07.019

    Article  Google Scholar 

  55. X. Yi, M. Cui, Y. Peng, C. **a, Z. Yao, Q. Li, Influence of Calcination temperature on microstructure and Properties of (NiCuZn)Fe2O4 Ferrite Prepared via Ultrasonic-assisted Co-precipitation. J. Supercond Nov Magn. 34, 1245–1252 (2021). https://doi.org/10.1007/s10948-021-05835-9

    Article  CAS  Google Scholar 

  56. G. Márquez, V. Sagredo, R. Guillén-Guillén, G. Attolini, F. Bolzoni, Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method. Rev. Mex Física. 66, 251–257 (2020). https://doi.org/10.31349/RevMexFis.66.251

    Article  Google Scholar 

  57. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, M. Hajdúchová, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe 2 O 4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045002 (2017). https://doi.org/10.1088/2043-6254/aa853a

    Article  CAS  Google Scholar 

  58. Y. Liu, Y. Zhang, J.D. Feng, C.F. Li, J. Shi, R. **ong, Dependence of magnetic properties on crystallite size of CoFe 2 O 4 nanoparticles synthesised by auto-combustion method. J. Exp. Nanosci. 4, 159–168 (2009). https://doi.org/10.1080/17458080902929895

    Article  CAS  Google Scholar 

  59. Y. Tanaka, Studies on the reactions between Oxides in Solid State at higher temperatures. VI. Discussion of the reaction mechanism with a special reference to the Effect of particle size on the reactions. Bull. Chem. Soc. Jpn. 17, 229–244 (1942). https://doi.org/10.1246/bcsj.17.229

    Article  CAS  Google Scholar 

  60. E.R. Kupp, S. Kochawattana, S.-H. Lee, S. Misture, G.L. Messing, Particle size effects on yttrium aluminum garnet (YAG) phase formation by solid-state reaction. J. Mater. Res. 29, 2303–2311 (2014). https://doi.org/10.1557/jmr.2014.224

    Article  CAS  Google Scholar 

  61. N. Maikhuri, A.K. Panwar, A.K. Jha, Investigation of A- and B-site Fe substituted BaTiO 3 ceramics. J. Appl. Phys. 113, 17D915 (2013). https://doi.org/10.1063/1.4796193

    Article  CAS  Google Scholar 

  62. A. Rajamani, G.F. Dionne, D. Bono, C.A. Ross, Faraday rotation, ferromagnetism, and optical properties in Fe-doped BaTiO3. J. Appl. Phys. 98, 063907 (2005). https://doi.org/10.1063/1.2060945

    Article  CAS  Google Scholar 

  63. F. Lin, W. Shi, Magnetic properties of transition-metal-codoped BaTiO3 systems. J. Alloys Compd. 475, 64–69 (2009). https://doi.org/10.1016/j.jallcom.2008.08.037

    Article  CAS  Google Scholar 

  64. J.A. Dawson, C.L. Freeman, J.H. Harding, D.C. Sinclair, Phase stabilisation of hexagonal barium titanate doped with transition metals: a computational study. J. Solid State Chem. 200, 310–316 (2013). https://doi.org/10.1016/j.jssc.2013.01.043

    Article  CAS  Google Scholar 

  65. M. Valant, I. Arčon, I. Mikulska, D. Lisjak, Cation order–disorder transition in Fe-Doped 6H-BaTiO 3 for Dilute Room-Temperature Ferromagnetism. Chem. Mater. 25, 3544–3550 (2013). https://doi.org/10.1021/cm402353t

    Article  CAS  Google Scholar 

  66. R. Maier, J.L. Cohn, J.J. Neumeier, L.A. Bendersky, Ferroelectricity and ferrimagnetism in iron-doped BaTiO3. Appl. Phys. Lett. 78, 2536–2538 (2001). https://doi.org/10.1063/1.1367311

    Article  CAS  Google Scholar 

  67. S.Y. Qiu, W. Li, Y. Liu, G.H. Liu, Y.Q. Wu, N. Chen, Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3 ceramics. Trans. Nonferrous Met. Soc. China (English Ed. 20, 1911–1915 (2010). https://doi.org/10.1016/S1003-6326(09)60394-0

    Article  CAS  Google Scholar 

  68. Y. Li, Q. Liu, T. Yao, Z. Pan, Z. Sun, Y. Jiang, H. Zhang, Z. Pan, W. Yan, S. Wei, Hexagonal BaTi1 – xCoxO3 phase stabilized by Co dopants. Appl. Phys. Lett. 96, 091905 (2010). https://doi.org/10.1063/1.3337110

    Article  CAS  Google Scholar 

  69. E. Hamada, W.-S. Cho, K. Takayanagi, Nanotwins in BaTiO 3 nanocrystals. Philos. Mag A 77, 1301–1308 (1998). https://doi.org/10.1080/01418619808214253

    Article  CAS  Google Scholar 

  70. D.P. Dutta, M. Roy, N. Maiti, A.K. Tyagi, Phase evolution in sonochemically synthesized Fe 3 + doped BaTiO 3 nanocrystallites: structural, magnetic and ferroelectric characterisation. Phys. Chem. Chem. Phys. 18, 9758–9769 (2016). https://doi.org/10.1039/C5CP07736B

    Article  CAS  PubMed  Google Scholar 

  71. G. Kishor, R.N. Bhowmik, A.K. Sinha, Structural phase stabilization via ba site do** with bivalent Sr, ca and zn ions and Fe site do** with trivalent Cr and Ga ions in the BaFe 12 O 19 hexaferrite and its magnetic modification, CrystEngComm. 24 (2022) 5269–5288. https://doi.org/10.1039/D2CE00583B

  72. K. Polley, T. Alam, J. Bera, Synthesis and characterization of BaFe12O19-CoFe2O4 ferrite composite for high-frequency antenna application. J. Aust Ceram. Soc. 56, 1179–1186 (2020). https://doi.org/10.1007/s41779-020-00477-x

    Article  CAS  Google Scholar 

  73. S. Pachari, S.K. Pratihar, B.B. Nayak, Improved magneto-capacitance response in combustion derived BaTiO3-(CoFe2O4/ZnFe2O4/Co0.5Zn0.5Fe2O4) composites. J. Alloys Compd. 784, 897–905 (2019). https://doi.org/10.1016/j.jallcom.2019.01.118

    Article  CAS  Google Scholar 

  74. A. Khamkongkaeo, P. Jantaratana, C. Sirisathitkul, T. Yamwong, S. Maensiri, Frequency-dependent magnetoelectricity of CoFe 2O 4-BaTiO 3 particulate composites. Trans. Nonferrous Met. Soc. China (English Ed. 21, 2438–2442 (2011). https://doi.org/10.1016/S1003-6326(11)61033-9

    Article  CAS  Google Scholar 

  75. N.P. Barde, P.S. Solanki, N.A. Shah, P.P. Bardapurkar, Investigations on structural, magnetic, elastic and thermodynamic properties of lithium ferrite–silica nanocomposites. J. Mol. Struct. 1260, 132771 (2022). https://doi.org/10.1016/j.molstruc.2022.132771

    Article  CAS  Google Scholar 

  76. H.C. CASTELL, S. DILNOT, M.W.A.R.R.I.N.G.T.O.N.R.B. Solids, Nature. 153, 653–654 (1944). https://doi.org/10.1038/153653b0

    Article  CAS  Google Scholar 

  77. T. Dippong, E.A. Levei, O. Cadar, Investigation of Structural, morphological and magnetic properties of MFe2O4 (M = co, Ni, Zn, Cu, Mn) obtained by Thermal decomposition. Int. J. Mol. Sci. 23, 8483 (2022). https://doi.org/10.3390/ijms23158483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. P. Głuchowski, R. Tomala, D. Kujawa, V. Boiko, T. Murauskas, P. Solarz, Insights into the relationship between Crystallite size, sintering pressure, temperature sensitivity, and Persistent Luminescence Color of Gd 2.97 pr 0.03 Ga 3 Al 2 O 12 powders and ceramics. J. Phys. Chem. C 126, 7127–7142 (2022). https://doi.org/10.1021/acs.jpcc.2c00672

    Article  CAS  Google Scholar 

  79. A. Chaudhuri, K. Mandal, Large magnetoelectric properties in CoFe2O4:BaTiO3 core–shell nanocomposites. J. Magn. Magn. Mater. 377, 441–445 (2015). https://doi.org/10.1016/j.jmmm.2014.10.142

    Article  CAS  Google Scholar 

  80. M.N. Rahaman, Ceramic Processing and Sintering (CRC, 2017). https://doi.org/10.1201/9781315274126

  81. W.D. Kingery, M. Berg, Study of the initial stages of sintering solids by Viscous Flow, Evaporation-Condensation, and Self‐Diffusion. J. Appl. Phys. 26, 1205–1212 (1955). https://doi.org/10.1063/1.1721874

    Article  CAS  Google Scholar 

  82. F. Sayed, D.C. Joshi, G. Kotnana, D. Peddis, T. Sarkar, R. Mathieu, Synthesis of BaTiO3-CoFe2O4 nanocomposites using a one-pot technique. Inorganica Chim. Acta. 520, 120313 (2021). https://doi.org/10.1016/j.ica.2021.120313

    Article  CAS  Google Scholar 

  83. K.K. Mallick, P. Shepherd, R.J. Green, Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. J. Magn. Magn. Mater. 312, 418–429 (2007). https://doi.org/10.1016/j.jmmm.2006.11.130

    Article  CAS  Google Scholar 

  84. A. Kumar, M.K. Verma, S. Singh, T. Das, L. Singh, K.D. Mandal, Electrical, magnetic and Dielectric properties of Cobalt-Doped Barium Hexaferrite BaFe12 – xCoxO19 (x = 0.0, 0.05, 0.1 and 0.2) ceramic prepared via a Chemical Route. J. Electron. Mater. 49, 6436–6447 (2020). https://doi.org/10.1007/s11664-020-08364-8

    Article  CAS  Google Scholar 

  85. J. Čuda, I. Mousa, B. David, N. Pizúrová, J. Tuček, T. Žák, M. Mašláň, O. Schneeweiss, Magnetic properties of CoFe[sub 2]O[sub 4]-BaTiO[sub 3] composites, AIP Conf. Proc. 1489 (2012) 123–132. https://doi.org/10.1063/1.4759480

  86. L.N. Alyabyeva, V.I. Torgashev, E.S. Zhukova, D.A. Vinnik, A.S. Prokhorov, S.A. Gudkova, D.R. Góngora, T. Ivek, S. Tomić, N. Novosel, D. Starešinić, D. Dominko, Z. Jagličić, M. Dressel, D.A. Zherebtsov, B.P. Gorshunov, Influence of chemical substitution on broadband dielectric response of barium-lead M-type hexaferrite. New. J. Phys. 21, 063016 (2019). https://doi.org/10.1088/1367-2630/ab2476

    Article  CAS  Google Scholar 

  87. S. Jayanthi, T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci. Mater. Electron. 19, 615–626 (2008). https://doi.org/10.1007/s10854-007-9410-6

    Article  CAS  Google Scholar 

  88. S. Pachari, S.K. Pratihar, B.B. Nayak, Microstructure driven magnetodielectric behavior in ex-situ combustion derived BaTiO3-ferrite multiferroic composites. J. Magn. Magn. Mater. 505, 166741 (2020). https://doi.org/10.1016/j.jmmm.2020.166741

    Article  CAS  Google Scholar 

  89. G. Tan, X. Chen, Structure and multiferroic properties of barium hexaferrite ceramics. J. Magn. Magn. Mater. 327, 87–90 (2013). https://doi.org/10.1016/j.jmmm.2012.09.047

    Article  CAS  Google Scholar 

  90. H. Nikmanesh, E. Jaberolansar, P. Kameli, A. Ghotbi Varzaneh, M. Mehrabi, M. Shamsodini, M. Rostami, I. Orue, V. Chernenko, Structural features and temperature-dependent magnetic response of cobalt ferrite nanoparticle substituted with rare earth sm3+. J. Magn. Magn. Mater. 543, 168664 (2022). https://doi.org/10.1016/j.jmmm.2021.168664

    Article  CAS  Google Scholar 

  91. S. Famenin Nezhad Hamedani, S.M. Masoudpanah, M.S. Bafghi, N. Asgharinezhad, Baloochi, Solution combustion synthesis of CoFe2O4 powders using mixture of CTAB and glycine fuels. J. Sol-Gel Sci. Technol. 86, 743–750 (2018). https://doi.org/10.1007/s10971-018-4671-5

    Article  CAS  Google Scholar 

  92. R. Ianoş, M. Bosca, R. Lazău, Fine tuning of CoFe2O4 properties prepared by solution combustion synthesis. Ceram. Int. 40, 10223–10229 (2014). https://doi.org/10.1016/j.ceramint.2014.02.110

    Article  CAS  Google Scholar 

  93. P. Imanipour, S. Hasani, A. Seifoddini, M. Nabiałek, Synthesis and characterization of Zinc and Vanadium Co-substituted CoFe2O4 nanoparticles synthesized by using the Sol-Gel Auto-Combustion Method, nanomaterials. 12 (2022) 752. https://doi.org/10.3390/nano12050752

  94. R. Gao, Y. Xue, Z. Wang, G. Chen, C. Fu, X. Deng, X. Lei, W. Cai, Effect of particle size on magnetodielectric and magnetoelectric coupling effect of CoFe2O4@BaTiO3 composite fluids. J. Mater. Sci. Mater. Electron. 31, 9026–9036 (2020). https://doi.org/10.1007/s10854-020-03436-1

    Article  CAS  Google Scholar 

  95. K.C. Verma, N. Goyal, R.K. Kotnala, Tuning magnetism in 0.25BaTiO3-0.75CoFe2O4 hetero-nanostructure to control ferroelectric polarization. Phys. B Condens. Matter. 554, 9–16 (2019). https://doi.org/10.1016/j.physb.2018.11.009

    Article  CAS  Google Scholar 

  96. A. Rani, J. Kolte, S.S. Vadla, P. Gopalan, Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceram. Int. 42, 8010–8016 (2016). https://doi.org/10.1016/j.ceramint.2016.01.205

    Article  CAS  Google Scholar 

  97. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, O. Omparkash, D. Kumar, Investigation of crystal structure, microstructure and low temperature magnetic behavior of ce 4 + and zn 2 + co-doped barium hexaferrites (BaFe 12 O 19), RSC Adv. 8 (2018) 19600–19609. https://doi.org/10.1039/C8RA02455C

  98. M.G. Shalini, S.C. Sahoo, Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method, in: 2016: p. 020445. https://doi.org/10.1063/1.4946496

  99. A. Devonport, A. Vishina, R.K. Singh, M. Edwards, K. Zheng, J. Domenico, N.D. Rizzo, C. Kopas, M. van Schilfgaarde, N. Newman, Magnetic properties of chromium-doped Ni80Fe20 thin films. J. Magn. Magn. Mater. 460, 193–202 (2018). https://doi.org/10.1016/j.jmmm.2018.03.054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti B. Nayak.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachari, S., Pratihar, S.K. & Nayak, B.B. Influence of CoFe2O4 particle size on the development of in-situ phases and magnetic properties of ex-situ combustion derived ferrite-BaTiO3 composite. J Electroceram (2024). https://doi.org/10.1007/s10832-024-00352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10832-024-00352-2

Keywords

Navigation