Log in

Structure, morphology and magnetodielectric investigations of BaTi1−xFexO3−δ ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferromagnetism is successfully imposed on a robust ferroelectric material by Fe-substitution and magnetodielectric investigation of the ceramics leads us to propose a sensor for magnetic field measurement. Tetragonal to hexagonal structural phase transformation is unambiguously identified from Rietveld refinement of the structure. Coexistence of tetragonal and hexagonal phase is also identified from Raman spectra and SAED. Structural details of the two phases and phase percentage are correlated to the physical properties obtained from P–E loop, M–H loop and magnetodielectric measurements. Ferroelectric loops are diminished due to pinning of domain wall motion by oxygen vacancies and an increase of the non-ferroelectric hexagonal phase percentage. The decrease of remnant magnetization is ascribed to the occupancy of Fe in pentahedral–octahedral sites and oxygen vacancies. Magnetodielectric dispersion below 104 Hz is predominantly due to extrinsic origin through the combined effect of space charge polarization and magnetoresistance. The intrinsic magnetodielectric effect above 104 Hz is attributed to strain mediated magnetoelectric coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Shirahata, T. Nozaki, G. Venkataiah, H. Taniguchi, M. Itoh, T. Taniyama, Switching of the symmetry of magnetic anisotropy in Fe/BaTiO3 heterostructures. Appl. Phys. Lett. 99, 022501 (2011)

    Article  Google Scholar 

  2. Y. Rongzheng Liu, R. Zhao, Y. Huang, Zhao, H. Zhou, Multiferroic ferrite/perovskite oxide core/shell nanostructures. J. Mater. Chem. 20, 10665–10670 (2010)

    Article  Google Scholar 

  3. J. Shah, R.K. Kotnala, Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy. Appl. Phys. Lett. 104, 142901 (2014)

    Article  Google Scholar 

  4. N.V. Dang, T.L. Phan, T.D. Thanh, V.D. Lam, L.V. Hong, Structural phase separation and optical and magnetic properties of BaTi1–xMnxO3 multiferroics. J. Appl. Phys. 111, 113913 (2012)

    Article  Google Scholar 

  5. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.-L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi1–xFexO3 ceramics. J. Appl. Phys. 110, 043914 (2011)

    Article  Google Scholar 

  6. N. Maikhuri, A.K. Panwar, A.K. Jha, Investigation of A- and B-site Fe substituted BaTiO3 ceramics. J. Appl. Phys. 113, 17D915 (2013)

    Article  Google Scholar 

  7. K.C. Verma, V. Gupta, J. Kaur, R.K. Kotnala, Raman spectra, photoluminescence, magnetism and magnetoelectric coupling in pure and Fe doped BaTiO3 nanostructures. J. Alloys Compd. 578, 5–11 (2013)

    Article  Google Scholar 

  8. Y. Li, Q. Liu, T. Yao, Z. Pan, Z. Sun, Y. Jiang, H. Zhang, Z. Pan, W. Yan, S. Wei, Hexagonal BaTi1–xCoxO3 phase stabilized by Co dopants. Appl. Phys. Lett. 96, 091905 (2010)

    Article  Google Scholar 

  9. S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014)

    Article  Google Scholar 

  10. H. Katayama-Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V.A. Dinh, P.H. Dederichs, Theoretical prediction of magnetic properties of Ba(Ti1 – xMx)O3 (M = Sc,V,Cr,Mn,Fe,Co,Ni,Cu). Jpn. J. Appl. Phys. 40, 1355–1358 (2001)

    Article  Google Scholar 

  11. X.K. Wei, T. Zou, F. Wang, Q.H. Zhang, Y. Sun, L. Gu, A. Hirata, M.W. Chen, Y. Yao, C.Q. **, R.C. Yu, Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature. J. Appl. Phys. 111, 073904 (2012)

    Article  Google Scholar 

  12. X.K. Wei, L.D. Yao, X. Shen, Y. Yang, S.J. You, F.Y. Li, C.Q. **, R.C. Yu, Structural modulation and magnetic properties of hexagonal Ba(Ti1–xFex)O3–δ ceramics. Phys. B 405, 4851–4854 (2010)

    Article  Google Scholar 

  13. Q. Shen-yu, L. Wang, L. Yu, L. Gui-hua, W. Yi-qiang, Phase evolution and room temperature ferroelectric and magnetic properties of Fe-doped BaTiO3 ceramics. Chen Nan Trans. Nonferrous Met. Soc. China 20, 1911–1915 (2010)

    Article  Google Scholar 

  14. D. Fangting Lin, X. Jiang, W. Ma, Shi, Influence of do** concentration on room-temperature ferromagnetism for Fe-doped BaTiO3 ceramics. J. Magn. Magn. Mater. 320, 691–694 (2008)

    Article  Google Scholar 

  15. G. Yukikini Akishige, T. Oomi, Yamamoto, E. Sawaguchi, Dielectric properties of ferroelectric hexagonal BaTiO3. J. Phys. Soc. Jpn. 58, 930 (1989)

    Article  Google Scholar 

  16. W. Fangting Lin, Shi, Effects of do** site and pre-sintering time on microstructure and magnetic properties of Fe-doped BaTiO3 ceramics. Physica B 407, 451–456 (2012)

    Article  Google Scholar 

  17. B. Xu, K.B. Yin, J. Lin, Y.D. **a, X.G. Wan, J. Yin, X.J. Bai, J. Du, Z.G. Liu, Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Phys. Rev. B 79, 134107 (2009)

    Article  Google Scholar 

  18. S. Ray, P. Mahadevan, S. Mandal, S.R. Krishnakumar, C.S. Kuroda, T. Sasaki, T. Taniyama, M. Itoh, High temperature ferromagnetism in single crystalline dilute Fe-doped BaTiO3. Phys. Rev. B 77, 104416 (2008)

    Article  Google Scholar 

  19. T. Chakraborty, S. Ray, M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys. Rev. B 83, 144407 (2011)

    Article  Google Scholar 

  20. J. Alka Rani, S.S. Kolte, Vadla, P. Gopalan, Structural, electrical, magnetic and magnetodielectric properties of Fe doped BaTiO3 ceramics. Ceram. Int. 42, 8010–8016 (2016)

    Article  Google Scholar 

  21. R.E. Daniel McCauley, Newnham, C.A. Randall, Intrinsic size effects in a barium titanate glass-ceramic. J. Am. Ceram. Soc., 81(4), 979–987 (1998)

    Article  Google Scholar 

  22. V. Petricek, M. Dusek, L. Palatinus. (2006) JANA2006. Praha: Institute of Physics

  23. H. Wondrantschex, U. Muller, Symmetry relations between space groups. Int Tables Crystallogr A, 244–245, 382–383 and 600–601 (2006)

  24. C.J. **ao, Z.H. Chi, W.W. Zhang, F.Y. Li, S.M. Feng, C.Q. **, X.H. Wang, X.Y. Deng, L.T. Li, The phase transitions and ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering. J. Phys. Chem. Solids 68, 311–314 (2007)

    Article  Google Scholar 

  25. B. Bagyalakshmi, M. Veera Gajendra Babu, B. Sundarakannan, S. Kalavathi, V. Sridharan, G. Amarendra, Converse magnetoelectric effect in NiFe2O4/BaTiO3 heterostructure by electric field induced inter-ferroelectric phase transition. Mater. Lett. 170, 48–52 (2016)

    Article  Google Scholar 

  26. C.D. Sinclair, M.S. Janet, F.M. Skakle, J.D. Morrison, R.I. Smith, T.P. Beales, Structure and electrical properties of oxygen-deficient hexagonal BaTiO3. J. Mater. Chem. 9, 1327–1331 (1999)

    Article  Google Scholar 

  27. V.E.S.T.A.K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  28. U.A. Joshi, S. Yoon, S. Baik, J.S. Lee, Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006)

    Article  Google Scholar 

  29. S. Rajan, P.M. Mohammed Gazzali, G. Chandrasekaran, Impact of Fe on structural modification and room temperature magnetic ordering in BaTiO3. Spectrochim. Acta A 171, 80–89 (2017)

    Article  Google Scholar 

  30. H. Hirotaka Yamaguchi, T. Uwe, Sakudo, E. Sawaguchi, Raman-scattering study of the soft phonon modes in hexagonal barium titanate. J. Phys. Soc. Japan 56, 589–595 (1987)

    Article  Google Scholar 

  31. P. Dimple, M. Dutta, N. Roy, Maiti, K.T.Lyagi Avesh, Phase evolution in sonochemically synthesized Fe3+ doped BaTiO3 nanocrystallites: structural, magnetic and ferroelectric characterization. Phys. Chem. Chem. Phys. 18, 9758 (2016)

    Article  Google Scholar 

  32. E.V. Ramana, F.O. Benilde, B.F. Costa, F. Figueiras, M.P.F. Graça, D.M. Mahajan, M.A. Valente, Effect of Fe-do** on the structure and magnetoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3. J. Mater. Chem. C 4, 1066 (2016)

    Article  Google Scholar 

  33. S.K. Das, P.P. Rout, S.K. Pradhan, B.K. Roul, Structural and magnetic properties of Ba0.98Zn0.02Ti1–xMnxO3 ceramics. J. Electroceram. 30, 266–271 (2013)

    Article  Google Scholar 

  34. N.V. Dang, N.T. Dung, P.T. Phong, Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B 457, 103–107 (2015)

    Article  Google Scholar 

  35. M.H. Frey, Z. Xu, P. Han, D.A. Payne, The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics, Ferroelectrics. Ferroelectrics, 206207, 337–357 (1998)

    Article  Google Scholar 

  36. T.K. Nath, N. Sudhakar, Magnetization study of g-Fe80–xNixCr20. Phys. Rev. B, 55(18), 12389 (1997)

    Article  Google Scholar 

  37. X.K. Wei, Y.T. Su, Y. Sui, Q.H. Zhang, Y. YaO, C.Q. **, R.C. Yu, Structure, electrical and magnetic property investigations on dense Fe-doped hexagonal BaTiO3. J. Appl. Phys. 110, 114112 (2011)

    Article  Google Scholar 

  38. S. Jayanthi, T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci.: Mater. Electron. 19, 615 (2008)

    Google Scholar 

  39. N.V. Dang, H.M. Nguyen, P.Y. Chuang, J.H. Zhang, T.D. Thanh, C.W. Hu, T.Y. Chen, H.D. Yang, V.D. Lam, C.H. Lee, L.V. Hong, Structure and magnetism of BaTi1–x FexO3–δ multiferroics. J. Appl. Phys. 111(7), 07D915 (2012)

    Article  Google Scholar 

  40. M. Rawat, K.L. Yadav, Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3–BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188–199 (2014)

    Article  Google Scholar 

  41. T. Phatungthane, P. Jaita, R. Sanjoom, T. Tunkasiri, G. Rujijanagul, Dielectric properties of Sr1–xBaxFe0.5Nb0.5O3 (x = 0.0, 0.1 ans 0.2) ceramics prepared by the molten salt technique and their electrode effects. Surf. Coat. Technol. 306, 229–235 (2016)

    Article  Google Scholar 

  42. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)

    Article  Google Scholar 

  43. Nidhi Adhlakha, K.L.Yadav, R., Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4–0.7BiFeO3 ceramics. Smart Mater. Struct. 23(10), 105024 (2014)

    Article  Google Scholar 

  44. M. Rawat, K.L. Yadav, Electrical, magnetic and magnetodielectric properties in ferrite-ferroelectric particulate composites. Smart Mater. Struct. 24(4), 045041 (2015)

    Article  Google Scholar 

  45. P.K. Patel, K.L. Yadav, H. Singh, A.K. Yadav, Origin of giant dielectric constant and magnetodielectric study in Ba(Fe0.5Nb0.5)O3 nanoceramics. J. Alloys Compd. 591, 224–229 (2014)

    Article  Google Scholar 

  46. P.K. Patel, K.L. Yadav, Giant dielectric permittivity and room temperature magnetodielectric study of BaTi0.2(Fe0.5Nb0.5)0.8O3 nanoceramic. Mater. Res. Bull. 48, 1435–1438 (2013)

    Article  Google Scholar 

  47. S.Y. Tan, S.R. Shannigrahi, S.H. Tan, F.E.H. Tay, Synthesis and characterization of composite MgFe 2O 4–BaTiO3 multiferroic system. J. Appl. Phys. 103, 094105 (2008)

    Article  Google Scholar 

  48. A. Kumar, S. Kumar, M. Prajapat, C. Prakash, Magnetodielectric properties of Cr3+ ions doped BaTiO3 multiferroic ceramic. AIP Conference Proceedings, 1665, 140008 (2015)

  49. R.E. Newnham, Properties of Materials, (Oxford University Press, Oxford, 2005)

    Google Scholar 

  50. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B, 67, 180401(R) (2003)

    Article  Google Scholar 

  51. H.M. Jang, J.H. Park, S. Ryu, S.R. Shannigrahi, Magnetoelectric coupling susceptibility from magnetodielectric effect. Appl. Phys. Lett. 93, 252904 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Ms. P.E would like to acknowledge financial support from the University Grants Commission, New Delhi through BSR fellowship (F.No.:25-1/2014-15(BSR)/7-305/2010/(BSR)). DST-FIST powder XRD facility of Department of Physics is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sundarakannan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esther Rubavathi, P., Venkidu, L., Veera Gajendra Babu, M. et al. Structure, morphology and magnetodielectric investigations of BaTi1−xFexO3−δ ceramics. J Mater Sci: Mater Electron 30, 5706–5717 (2019). https://doi.org/10.1007/s10854-019-00864-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00864-6

Navigation