Log in

Influence of triethylamine on the anodic dissolution characteristics of Ni, Cu and their alloys in non-aqueous solvents containing fluoride media: voltammetric and surface morphologic study

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Multisweep cyclic voltammetric (CV) responses of nickel, copper, Monel and nickel–copper alloy had been extensively studied and compared in different non-aqueous solvents, such as acetonitrile (AN), propylene carbonate (PC) and sulpholane-containing anhydrous hydrogen fluoride (AHF) medium in the absence and the presence of triethylamine (Et3N). The quantity of dissolution and surface morphological transformation on the electrodes as a result of anodic polarisation were investigated by means of atomic absorption spectroscopy and scanning electron microscopy (SEM), respectively. The CV study indicates that Ni, Cu and their alloys are highly unstable in AN/AHF medium. Surface morphology of Ni after polarisation in this medium reveals the generation of number of pits, whereas the evolution of small crystallites of CuF2 is noted on the polarised alloy material, as evidenced by SEM pictures. The dissolution characteristics decrease significantly in PC/AHF medium and become low in sulpholane-containing fluoride medium on the four electrodes. The relative solubility of metal fluoride film in the three solvents increases in the order: sulpholane < PC < AN. The voltammograms suggest that addition of Et3N (0.5 M) to AN- and PC-containing AHF medium helps both in maintaining uniform dissolution and generating compact fluoride film on the electrode surface. The addition of Et3N to AHF/sulpholane medium shows only little influence in improving the electrocatalytic oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alsmeyer YW, Childs WV, Flynn RM, Moore GGI, Smeltzer JC (1994) In: Banks RE, Smart BE, Tatlow JC (eds) Organic fluorine chemistry: principles and commercial applications. Plenum, New York

    Google Scholar 

  2. Childs WV, Christensen L, Klink FW, Koplin CF (1991) In: Lund H, Baizer MM (eds) Organic electrochemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  3. Chambers RD (2004) Fluorine in organic chemistry. Blackwell, Oxford

    Book  Google Scholar 

  4. Jayaraman K, Noel M (2001) Bull Electrochem 17:227–238

    CAS  Google Scholar 

  5. Yonekura M, Nagase S, Baba H (1976) Bull Chem Soc Jpn 49:1113–1116

    Article  CAS  Google Scholar 

  6. Shodai Y, Inaba M, Momota K, Kimura T, Tasaka A (2004) Electrochim Acta 49:2131–2137

    Article  CAS  Google Scholar 

  7. Tasaka A, Yachi T, Makino T, Hamano K, Kimura T, Momota K (1999) J Fluor Chem 97:253–261

    Article  CAS  Google Scholar 

  8. Tasaka A, Nakanishi K, Masuda N, Nakai T, Ikeda K, Momota K, Saito M, Inaba M (2011) Electrochim Acta 56:4335–4343

    Article  CAS  Google Scholar 

  9. Matalin VA, Kaurova GI, Moldavskiy DD, Barabanov VG, Blinova OV (2003) Fluor Notes 6:31–35

    Google Scholar 

  10. Matalin VA, Kaurova GI, Berenblit VV, Gribel VI (2007) Russ J Appl Chem 80:2090–2092

    Article  CAS  Google Scholar 

  11. Ilayaraja N, Velayutham D, Noel M (2009) J Fluor Chem 130:656–661

    Article  CAS  Google Scholar 

  12. Dimitrov A, Rudiger S, Seppelt K, Peplinski T (1994) J Fluor Chem 69:15–19

    Article  Google Scholar 

  13. Rudiger S, Dimitrov A, Hottman K (1996) J Fluor Chem 76:155–160

    Article  Google Scholar 

  14. Sartori P, Ignat’ev N, Datsenko S (1995) J Fluor Chem 75:157–161

    Article  CAS  Google Scholar 

  15. Sartori P, Ignat’ev N (1998) J Fluor Chem 87:157–162

    Article  CAS  Google Scholar 

  16. Drakesmith FG (1997) Electro fluorination of organic compounds. Springer, Berlin

    Google Scholar 

  17. Sing YL, Lee LF (1985) J Org Chem 50:4642–4646

    Article  CAS  Google Scholar 

  18. Lee LF, Stikes GL, Sing YL, Miller ML, Dolson MG, Normansell JE, Auinbauh SM (1991) Pestic Sci 31:555–568

    Article  CAS  Google Scholar 

  19. Parker MH (2004) Synth Commun 34:903–907

    Article  CAS  Google Scholar 

  20. Haruta M, Watanabe N (1976) J Fluor Chem 7:159–177

    Article  CAS  Google Scholar 

  21. Rozhkov IN, Bukhtiarov AV, Knunyants L (1969) Izv Akad Nauuk SSSR Ser Chem 4:945–947

    Google Scholar 

  22. Bulan A, Herzig J (2004) US Patent: US 6752917

  23. Qian SY, Dumont H, Conway BE (1997) J Appl Electrochem 27:1245–1253

    Article  CAS  Google Scholar 

  24. Noel M, Suryanarayanan V, Krishnamoorthy S (1995) J Fluor Chem 74:241–246

    Article  CAS  Google Scholar 

  25. Noel M, Suriyanarayanan N, Suryanarayanan V (2001) J Solid State Electrochem 5:419–430

    Article  CAS  Google Scholar 

  26. Suriyanarayanan N, Noel M (2008) J Solid State Electrochem 12:1453–1460

    Article  CAS  Google Scholar 

  27. Sathyamoorthi S, Velayutham D, Suryanarayanan V, Noel M (2011) Electrochim Acta 56:7012–7021

    Article  CAS  Google Scholar 

  28. Calandra AJ, DeTacconi NR, Perevio R, Arvia AJ (1974) Electrochim Acta 19:901–905

    Article  CAS  Google Scholar 

  29. Noel M, Vasu KI (1990) Cyclic voltammetry and the frontiers of electrochemistry. Oxford-IBH, New Delhi

    Google Scholar 

  30. Clifford AF, Sargent J (1957) J Am Chem Soc 79:4041–4045

    Article  CAS  Google Scholar 

  31. Isogai T, Nakai T, Inoue H, Nakanishi K, Kohara S, Saito M, Inaba M, Tasaka A (2011) J Phys Chem B 115:9593–9603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Director, CSIR-CECRI, Karaikudi for his keen encouragement in publishing this work. Financial support from DRDO, New Delhi is greatly acknowledged. Thanks are due to Dr. R.P. Singh and Dr. Raju Brahma, CFEES, DRDO, New Delhi for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sathyamoorthi, S., Saravanan, K., Velayutham, D. et al. Influence of triethylamine on the anodic dissolution characteristics of Ni, Cu and their alloys in non-aqueous solvents containing fluoride media: voltammetric and surface morphologic study. J Appl Electrochem 42, 595–606 (2012). https://doi.org/10.1007/s10800-012-0436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0436-y

Keywords

Navigation