Log in

A Closer Look at Natário’s Zero-Expansion Warp Drive

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We conduct a detailed analysis of Natário’s “zero-expansion” warp drive spacetime, focusing on scalar curvature invariants within the 3\(+\)1 formalism. This paper has four primary objectives: First, we establish the Petrov type classification of Natário’s spacetime, which has not been previously determined in the literature. We prove that Natário’s spacetime is Petrov type I, not fitting the Class B warped product spacetime definition. Second, we assess the relative magnitude of the Weyl scalar curvature invariant and compare it with the amplitudes of Einstein’s scalar and the Ricci quadratic and cubic invariants within the warp-bubble zone. Previous studies have focused on Ricci curvature and the energy-momentum tensor, neglecting the Weyl curvature, which we demonstrate plays a significant role due to the sharp localization of the form function near the warp-bubble radius. Third, we visualize several curvature invariants for Natário’s warp drive, as well as momentum density, which we show as the critical physical quantity governing the orientation of the warp drive trajectory, overshadowing space volume changes. Fourth, we critically examine claims that Natário’s warp drive is more realistic than Alcubierre’s. We demonstrate that Natário’s spacetime exhibits curvature invariant amplitudes 35 times greater than Alcubierre’s, given identical warp-bubble parameters, making Natário’s concept even less viable. Additionally, we address Mattingly et al.’s analysis, highlighting their underestimation of curvature invariant amplitudes by 21 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Mattingly, B., Kar, A., Gorban, M., Julius, W., Watson, C.K., Ali, M., Baas, A., Elmore, C., Lee, J.S., Shakerin, B., Davis, E.W., Cleaver, G.B.: Curvature invariants for the Alcubierre and Natário warp drives. Universe 7(2) (2021). https://doi.org/10.3390/universe7020021ar**v:2010.13693 [gr-qc]

  2. Alcubierre, M.: The warp drive: hyper-fast travel within general relativity. Class. Quantum Grav. 11(5), 73 (1994). https://doi.org/10.1088/0264-9381/11/5/001ar**v:gr-qc/0009013 [gr-qc]

  3. Hiscock, W.A.: Quantum effects in the Alcubierre warp-drive spacetime. Class. Quantum Grav. 14(11), 183 (1997). https://doi.org/10.1088/0264-9381/14/11/002ar**v:gr-qc/9707024 [gr-qc]

  4. González-Díaz, P.F.: Warp drive space-time. Phys. Rev. D. 62, 044005 (2000). https://doi.org/10.1103/PhysRevD.62.044005. ar**v:gr-qc/9907026 [gr-qc]

  5. Clark, C., Hiscock, W.A., Larson, S.L.: Null geodesics in the Alcubierre warp-drive spacetime: the view from the bridge. Class. Quantum Grav. 16(12), 3965 (1999). https://doi.org/10.1088/0264-9381/16/12/313ar**v:gr-qc/9907019 [gr-qc]

  6. Lobo, F.S.N., Visser, M.: Fundamental limitations on ‘warp drive’ spacetimes. Class. Quantum Grav. 21(24), 5871 (2004). https://doi.org/10.1088/0264-9381/21/24/011ar**v:gr-qc/0406083 [gr-qc]

  7. Santiago, J., Schuster, S., Visser, M.: Generic warp drives violate the null energy condition. Phys. Rev. D. 105, 064038 (2022). https://doi.org/10.1103/PhysRevD.105.064038. ar**v:2105.03079 [gr-qc]

  8. Olum, K.D.: Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567–3570 (1998). https://doi.org/10.1103/PhysRevLett.81.3567ar**v:gr-qc/9805003 [gr-qc]

  9. Pfenning, M.J., Ford, L.H.: The unphysical nature of ‘warp drive’. Class. Quantum Grav. 14(7), 1743 (1997). https://doi.org/10.1088/0264-9381/14/7/011ar**v:gr-qc/9702026 [gr-qc]

  10. Synge, J.L.: Relativity: The General Theory. Series in physics. North-Holland Publishing Company, Amsterdam (1966)

    Google Scholar 

  11. Marquet, P.: Gödel time travel with warp drive propulsion. Prog. Phys. 18 (2022)

  12. Shoshany, B., Stober, Z.: Time travel paradoxes and entangled timelines (2023). ar**v:2303.07635 [quant-ph]

  13. Shoshany, B., Snodgrass, B.: Warp drives and closed timelike curves (2023). ar**v:2309.10072 [gr-qc]

  14. Helmerich, C., Fuchs, J., Bobrick, A., Sellers, L., Melcher, B., Martire, G.: Analyzing warp drive spacetimes with warp factory. Class. Quantum Grav. 41(9), 095009 (2024). https://doi.org/10.1088/1361-6382/ad2e42. ar**v:2404.03095 [gr-qc]

  15. Fuchs, J., Helmerich, C., Bobrick, A., Sellers, L., Melcher, B., Martire, G.: Constant velocity physical warp drive solution. Class. Quantum Grav. 41(9), 095013 (2024). https://doi.org/10.1088/1361-6382/ad26aa. ar**v:2405.02709 [gr-qc]

  16. Garattini, R., Zatrimaylov, K.: On the wormhole–warp drive correspondence (2024). ar**v:2401.15136 [gr-qc]

  17. Eroshenko, Y.N.: Escape from a black hole with spherical warp drive. Int. J. Mod. Phys. A 38(02), 2350016 (2023). https://doi.org/10.1142/S0217751X23500161. ar**v:2210.17468 [gr-qc]

  18. Abellán, G., Bolivar, N., Vasilev, I.: Influence of anisotropic matter on the Alcubierre metric and other related metrics: revisiting the problem of negative energy. Gen. Relativ. Gravit. 55(4), 60 (2023). https://doi.org/10.1007/s10714-023-03105-8. ar**v:2305.03736 [gr-qc]

  19. Abellán, G., Bolivar, N., Vasilev, I.: Spherical warp-based bubble with non-trivial lapse function and its consequences on matter content. Class. Quant. Grav. 41(10), 105011 (2024). https://doi.org/10.1088/1361-6382/ad3ed9

    Article  ADS  MathSciNet  Google Scholar 

  20. Schuster, S., Santiago, J., Visser, M.: ADM mass in warp drive spacetimes. Gen. Relativ. Gravit. 55(1) (2023). https://doi.org/10.1007/s10714-022-03061-9ar**v:2205.15950 [gr-qc]

  21. Natário, J.: Warp drive with zero expansion. Class. Quantum Grav. 19(6), 1157 (2002). https://doi.org/10.1088/0264-9381/19/6/308ar**v:gr-qc/0110086 [gr-qc]

  22. Lentz, E.W.: Breaking the warp barrier: hyper-fast solitons in Einstein-Maxwell-plasma theory. Class. Quantum Grav. 38(7), 075015 (2021). https://doi.org/10.1088/1361-6382/abe692. ar**v:2006.07125 [gr-qc]

  23. Fell, S.D.B., Heisenberg, L.: Positive energy warp drive from hidden geometric structures. Class. Quantum Grav. 38(15), 155020 (2021). https://doi.org/10.1088/1361-6382/ac0e47. ar**v:2104.06488 [gr-qc]

  24. Gourgoulhon, E.: 3\(+\)1 Formalism in General Relativity. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24525-1

  25. Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139193344

  26. Alcubierre, M.: Introduction to 3\(+\)1 Numerical Relativity. International series of monographs on physics. Oxford University Press, Oxford (2008). https://doi.org/10.1093/acprof:oso/9780199205677.001.0001

  27. White, H.G.: A discussion of space-time metric engineering. Gen. Relativ. Gravit. 35(11) (2003). https://doi.org/10.1023/A:1026247026218

  28. Loup, F.: An extended version of the Natario warp drive equation based in the original 3 \(+\) 1 ADM formalism which encompasses accelerations and variable velocities [Research Report] Residencia de Estudantes Universitas, Zaragoza, Spain (2017). https://hal.science/hal-01655423

  29. Loup, F.: Six Different Natario Warp Drive Spacetime Metric Equations [Research Report] Residencia de Estudantes Universitas, Zaragoza, Spain. (2018). https://hal.science/hal-01862911

  30. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511807787

  31. Felice, F., Clarke, C.J.S.: Relativity on Curved Manifolds. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  32. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Co., San Francisco (1973). Reprinted by Princeton University Press, Princeton (2017)

  33. Arnowitt, R., Deser, S., Misner, C.W.: Republication of: The dynamics of general relativity. Gen. Relativ. Gravit. 40(9) (2008). https://doi.org/10.1007/s10714-008-0661-1ar**v:gr-qc/0405109 [gr-qc]

  34. Rodal, J.: Visualization and analysis of the curvature invariants in the Alcubierre warp-drive spacetime. Gen. Relativ. Gravit. 55(134) (2023). https://doi.org/10.1007/s10714-023-03182-9https://www.researchsquare.com/article/rs-3318285/v1

  35. Andrews, B., Hopper, C.: The Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem. Lecture Notes in Mathematics, pp. 63–65. Springer, Berlin Heidelberg (2010). https://books.google.com/books?id=wx5uCQAAQBAJ

  36. Einstein, A.: The Collected Papers of Albert Einstein, Vol. 12: The Berlin Years - Correspondence, January-December 1921. Princeton University Press, Princeton, N.J. (2009). https://einsteinpapers.press.princeton.edu/vol12-doc/372

  37. Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32(11), 3135–3140 (1991). https://doi.org/10.1063/1.529470

    Article  ADS  MathSciNet  Google Scholar 

  38. Harvey, A.: On the algebraic invariants of the four-dimensional Riemann tensor. Class. Quantum Grav. 7(4), 715 (1990). https://doi.org/10.1088/0264-9381/7/4/022

    Article  ADS  MathSciNet  Google Scholar 

  39. Zakhary, E., Mcintosh, C.B.G.: A complete set of Riemann invariants. Gen. Relativ. Gravit. 29(5), 539–581 (1997). https://doi.org/10.1023/A:1018851201784

    Article  ADS  MathSciNet  Google Scholar 

  40. Cherubini, C., Bini, D., Capozziello, S., Ruffini, R.: Second order scalar invariants of the Riemann tensor: applications to black hole spacetimes. Int. J. Mod. Phys. D 11(06), 827–841 (2002). https://doi.org/10.1142/S0218271802002037ar**v:gr-qc/0302095 [gr-qc]

  41. Santosuosso, K., Pollney, D., Pelavas, N., Musgrave, P., Lake, K.: Invariants of the Riemann tensor for class B warped product space-times. Comput. Phys. Commun. 115(2), 381–394 (1998). https://doi.org/10.1016/S0010-4655(98)00134-9ar**v:gr-qc/9809012 [gr-qc]

  42. MacCallum, M.A.H.: Spacetime invariants and their uses. (2015). ar**v:1504.06857 [gr-qc]

  43. Coley, A., Hervik, S., Pelavas, N.: Spacetimes characterized by their scalar curvature invariants. Class. Quantum Grav. 26(2), 025013 (2009). https://doi.org/10.1088/0264-9381/26/2/025013ar**v:gr-qc/0901.0791 [gr-qc]

  44. Ralph, T.C., Chang, C.: Spinning up a time machine. Phys. Rev. D. 102, 124013 (2020). https://doi.org/10.1103/PhysRevD.102.124013. ar**v:2007.14627 [gr-qc]

  45. Finazzi, S., Liberati, S., Barceló, C.: Semiclassical instability of dynamical warp drives. Phys. Rev. D. 79, 124017 (2009). https://doi.org/10.1103/PhysRevD.79.124017. ar**v:0904.0141 [gr-qc]

  46. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago, USA (1984)

    Book  Google Scholar 

  47. Plebanski, J., Krasinski, A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  48. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford, UK (1985)

    Google Scholar 

  49. Alcubierre, M., Lobo, F.S.N.: Warp Drive Basics. In: Lobo, F.S.N. (ed.) Wormholes, Warp Drives and Energy Conditions, vol. 189, pp. 257–279. Springer, Cham (2017). https://arxiv.org/abs/2103.05610. https://doi.org/10.1007/978-3-319-55182-1_11

  50. Marquet, P.: The generalized warp drive concept in the EGR theory. The Abraham Zelmanov Journal. 2, 261–287 (2009)

    Google Scholar 

  51. Steiner, A.W.: Frontiers the physics of dense matter for neutron stars. J. Phys: Conf. Ser. 706(2), 022001 (2016)

    Google Scholar 

  52. Celotti, A., Miller, J.C., Sciama, D.W.: Astrophysical evidence for the existence of black holes. Class. Quantum Gravity 16(12A), 3 (1999). https://doi.org/10.1088/0264-9381/16/12A/301

    Article  ADS  MathSciNet  Google Scholar 

  53. Shaposhnikov, N., Titarchuk, L.: Determination of black hole masses in galactic black hole binaries using scaling of spectral and variability characteristics. Astrophys J. 699(1), 453 (2009). https://doi.org/10.1088/0004-637X/699/1/453

    Article  ADS  Google Scholar 

  54. Barco, O.: Primordial black hole origin for thermal gamma-ray bursts. Mon. Not. R. Astron. Soc. 506(1), 806–812 (2021). https://doi.org/10.1093/mnras/stab1747. ar**v:2007.11226 [astro-ph.HE]

  55. Bobrick, A., Martire, G.: Introducing physical warp drives. Class. Quantum Gravity 38(10), 105009 (2021). https://doi.org/10.1088/1361-6382/abdf6e. ar**v:2102.06824 [gr-qc]

  56. White, H.G.: Warp field mechanics 101. J. Br. Interplanet. Soc. 66, 242–247 (2011). https://ntrs.nasa.gov/citations/20110015936

  57. White, H.G.: Warp field mechanics 102: energy optimization, Eagleworks Laboratories. Nasa Technical Reports Service Document NTRS-ID-20130011213, NASA (2013). https://ntrs.nasa.gov/citations/20130011213

  58. Sarfatti, J.: 3\(+\)1 ADM Warp Drive Inside Meta-Material Fuselage (2021). https://www.academia.edu/44956634/3_1_ADM_Warp_Drive_Inside_Meta_Material_Tic

  59. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185

  60. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, UK (2009)

    Book  Google Scholar 

  61. Pareja, M.J., MacCallum, M.A.H.: Local freedom in the gravitational field revisited. Class. Quantum Grav. 23(15), 5039 (2006). https://doi.org/10.1088/0264-9381/23/15/019ar**v:gr-qc/0605075 [gr-qc]

  62. Carot, J., Costa, J.: On the geometry of warped spacetimes. Class. Quantum Grav. 10(3), 461–482 (1993). https://doi.org/10.1088/0264-9381/10/3/007. p. 467

  63. Carot, J., Núñez, L.A.: Hydrodynamics in type B warped spacetimes. Phys. Rev. D. 72, 084005 (2005). https://doi.org/10.1103/PhysRevD.72.084005ar**v:gr-qc/0507066 [gr-qc]

  64. Hofmann, S., Niedermann, F., Schneider, R.: Interpretation of the Weyl tensor. Phys. Rev. D. 88, 064047 (2013). https://doi.org/10.1103/PhysRevD.88.064047. ar**v:1308.0010 [gr-qc]

  65. Bini, D., Geralico, A., Jantzen, R.T.: Petrov type I spacetime curvature: Principal null vector spanning dimension. Int. J. Geom. Methods Mod. Phys. 20(05), 2350087 (2023). https://doi.org/10.1142/S0219887823500871. ar**v:2111.01283 [gr-qc]

  66. Wolfram Research, I.: Mathematica®. Version 13.2.0.0, 100 Trade Center Drive, Champaign, IL 61820-7237 (2022). https://www.wolfram.com/mathematica/

  67. Penrose, R.: Singularities and time asymmetry. General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge, UK (1979)

  68. Fischer, U.R., Visser, M.: Warped space-time for phonons moving in a perfect nonrelativistic fluid. Europhys. Lett. 62(1) (2003). https://doi.org/10.1209/epl/i2003-00103-6ar**v:gr-qc/0211029 [gr-qc]

Download references

Acknowledgements

We extend our sincere gratitude to the anonymous peer reviewers whose insightful comments and criticisms significantly contributed to enhancing the quality of this manuscript. Their dedication and expertise have been invaluable in improving our work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

J.R. was solely responsible for all aspects of the manuscript. This includes the conception and planning of the study, the execution of all computational analyses, the writing of the entire manuscript text, the preparation and design of all figures, and the review and editing of the manuscript. J.R. is the sole author of this work and assumes full accountability for the content and integrity of the article.

Corresponding author

Correspondence to José Rodal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Curvature Invariants of the Natário Metric

Appendix A: Curvature Invariants of the Natário Metric

In this appendix, we present the explicit formulas for the curvature invariants used in Section 4 to calculate and visualize them in Natário’s spacetime for different conditions. These curvature invariants are, namely, Einstein’s curvature invariant \(G \equiv G_{\alpha }^{\alpha }= - R\) as per (2a), (3), the quadratic Ricci invariant, \(r_{1} \equiv \widehat{R}_{\alpha }^{\,\,\,\beta } \widehat{R}_{\beta }^{\,\,\,\alpha } = \widehat{G}_{\alpha }^{\,\,\,\beta } \widehat{G}_{\beta }^{\,\,\,\alpha }\) as per (9a), (9b), Weyl’s curvature invariant, \(I \equiv C_{\alpha \beta \gamma \delta } C^{\alpha \beta \gamma \delta }\) as per (8), and the cubic Ricci invariant, \(r_{2} \equiv \widehat{R}_{\alpha }^{\,\,\,\beta } \widehat{R}_{\beta }^{\,\,\,\gamma } = \widehat{G}_{\alpha }^{\,\,\,\beta } \widehat{G}_{\beta }^{\,\,\,\gamma } \widehat{G}_{\gamma }^{\,\,\,\alpha }\) as per (11a), (11b).

$$\begin{aligned} G =-2\, v^2 \left( 3 \left( \frac{\partial f}{\partial r}\right) ^2 \, \cos ^2(\theta )+ \left( \frac{\partial f}{\partial r} + \frac{r}{2} \frac{\partial ^2 f}{\partial r^2}\right) ^2 \, \sin ^2(\theta ) \right) =2\, \varrho \; \kappa . \end{aligned}$$
(A1)
$$\begin{aligned} r_1&=\frac{1}{16 r^2} v^2 \Biggl [4 r^2 v^2 (-4 \cos (2 \theta )+3 \cos (4 \theta )+109) \frac{\partial f}{\partial r}^4 \nonumber \\&\quad +r^2 \Biggl (8 r^2 \frac{\partial ^3 f}{\partial r^3}^2 \sin ^2(\theta ) \left( 4 v^2 f^2 \cos ^2(\theta )-1\right) \nonumber \\&\quad + \frac{\partial ^2 f}{\partial r^2}^2 \Biggl (v^2 \Biggl (11 r^4 \sin ^4(\theta ) \frac{\partial ^2 f}{\partial r^2}^2+16 r^2 f \sin ^2(\theta ) (5 \cos (2 \theta )+1) \frac{\partial ^2 f}{\partial r^2} \nonumber \\&\quad +32 f^2 (4 \cos (2 \theta )+3 \cos (4 \theta )+5)\Biggr )+32 (4 \cos (2 \theta )-5)\Biggr ) \nonumber \\&\quad +32 r \frac{\partial ^3 f}{\partial r^3} \frac{\partial ^2 f}{\partial r^2} \left( v^2 f^2 \sin ^2(2 \theta )-3 \sin ^2(\theta )\right) \Biggr )\nonumber \\&\quad +32 r v^2 \sin ^2(\theta ) \frac{\partial f}{\partial r}^3 \left( r^2 (4 \cos (2 \theta )+21) \frac{\partial ^2 f}{\partial r^2}-2 f (7 \cos (2 \theta )+9)\right) \nonumber \\&\quad +8 r \frac{\partial f}{\partial r} \Biggl ( \frac{\partial ^2 f}{\partial r^2} \Biggl (v^2 \sin ^2(\theta ) \Biggl (11 r^4 \sin ^2(\theta ) \frac{\partial ^2 f}{\partial r^2}^2+2 r^2 f (13 \cos (2 \theta )-5) \frac{\partial ^2 f}{\partial r^2}\nonumber \\&\quad +8 f^2 (3 \cos (2 \theta )+5)\Biggr )+8 (\cos (2 \theta )-5)\Biggr )\nonumber \\&\quad -4 r \frac{\partial ^3 f}{\partial r^3} \left( v^2 f \sin ^2(2 \theta ) \left( r^2 \frac{\partial ^2 f}{\partial r^2}-2 f\right) +2 \sin ^2(\theta )\right) \Biggr )\nonumber \\&\quad +8 \frac{\partial f}{\partial r}^2 \Biggl (v^2 \Biggl (\sin ^2(\theta ) \Biggl (r^4 (32-7 \cos (2 \theta )) \frac{\partial ^2 f}{\partial r^2}^2+4 r^2 f (5 \cos (2 \theta )-13) \frac{\partial ^2 f}{\partial r^2}\nonumber \\&\quad +8 f^2 (3 \cos (2 \theta )+5)\Biggr )-8 r^3 f \frac{\partial ^3 f}{\partial r^3} \sin ^2(2 \theta )\Biggr )-8 (3 \cos (2 \theta )+5)\Biggr )\Biggr ]. \end{aligned}$$
(A2)
$$\begin{aligned} I&= \frac{1}{6 r^2}\ v^2 \Biggl [-6 r^4 \frac{\partial ^3 f}{\partial r^3}^2 \left( \sin ^2(\theta )-v^2 f^2 \sin ^2(2 \theta )\right) \nonumber \\&\quad +8 r^2 \frac{\partial ^2 f}{\partial r^2}^2 \Biggl (v^2 \Biggl (r^4 \sin ^4(\theta ) \frac{\partial ^2 f}{\partial r^2}^2+3 r^2 f \sin ^2(\theta ) (3 \cos (2 \theta )+1) \frac{\partial ^2 f}{\partial r^2}\nonumber \\&\quad +3 f^2 (4 \cos (2 \theta )+3 \cos (4 \theta )+5)\Biggr )-12 \sin ^2(\theta )\Biggr )\nonumber \\&\quad +r^2 v^2 (-52 \cos (2 \theta )-11 \cos (4 \theta )+351) \frac{\partial f}{\partial r}^4\nonumber \\&\quad +24 r^3 \frac{\partial ^3 f}{\partial r^3} \frac{\partial ^2 f}{\partial r^2} \left( v^2 f^2 \sin ^2(2 \theta )-2 \sin ^2(\theta )\right) \nonumber \\&\quad +16 r v^2 \frac{\partial f}{\partial r}^3 \left( r^2 \sin ^2(\theta ) (\cos (2 \theta )+29) \frac{\partial ^2 f}{\partial r^2}-6 f \sin ^2(2 \theta )\right) \nonumber \\&\quad +4 r \frac{\partial f}{\partial r} \Biggl (4 \sin ^2(\theta ) \frac{\partial ^2 f}{\partial r^2} \Biggl (v^2 \Biggl (4 r^4 \sin ^2(\theta ) \frac{\partial ^2 f}{\partial r^2}^2+3 r^2 f (5 \cos (2 \theta )+1) \frac{\partial ^2 f}{\partial r^2}\nonumber \\&\quad +3 f^2 (3 \cos (2 \theta )+5)\Biggr )+12\Biggr )\nonumber \\&\quad +3 r \frac{\partial ^3 f}{\partial r^3} \left( v^2 f \sin ^2(2 \theta ) \left( 4 f-r^2 \frac{\partial ^2 f}{\partial r^2}\right) +4 \sin ^2(\theta )\right) \Biggr )\nonumber \\&\quad +6 \frac{\partial f}{\partial r}^2 \Biggl (2 \sin ^2(\theta ) \left( -5 r^4 v^2 (\cos (2 \theta )-3) \frac{\partial ^2 f}{\partial r^2}^2-8\right) \nonumber \\&\quad +r^2 v^2 f \left( (76 \cos (2 \theta )+5 \cos (4 \theta )+15) \frac{\partial ^2 f}{\partial r^2}-4 r \frac{\partial ^3 f}{\partial r^3} \sin ^2(2 \theta )\right) \nonumber \\&\quad +8 v^2 f^2 \sin ^2(\theta ) (3 \cos (2 \theta )+5)\Biggr )\Biggr ]. \end{aligned}$$
(A3)
$$\begin{aligned} r_2&= \frac{1}{128 \ r^3}3 v^4 \Biggl [64 \ v^2 f^3 \left( r \frac{\partial ^2 f}{\partial r^2} \cos ^2(\theta )+\sin ^2(\theta ) \frac{\partial f}{\partial r}\right) \Biggl (\sin ^2(2 \theta ) \ \frac{\partial ^3 f}{\partial r^3}^2 r^4\nonumber \\&\quad +2 (4 \cos (2 \theta )+5 \cos (4 \theta )+7) \frac{\partial ^2 f}{\partial r^2}^2 r^2+4 \ \sin ^2(2 \theta ) \left( 2 \frac{\partial f}{\partial r}+r \frac{\partial ^2 f}{\partial r^2}\right) \frac{\partial ^3 f}{\partial r^3} r^2\nonumber \\&\quad +8 (\cos (2 \theta )+3) \sin ^2(\theta ) \ \frac{\partial f}{\partial r} \frac{\partial ^2 f}{\partial r^2} r+16 \sin ^2(2 \theta ) \frac{\partial f}{\partial r}^2\Biggr )\nonumber \\&\quad -4 r v^2 \Biggl (2 \sin ^2(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^2 \Biggl (r^2 \frac{\partial ^3 \ f}{\partial r^3}^2 \sin ^2(2 \theta )+4 r \frac{\partial ^2 \ f}{\partial r^2} \frac{\partial ^3 f}{\partial r^3} \sin ^2(2 \ \theta )\nonumber \\&\quad -8 (4 \cos (2 \theta )+\cos (4 \theta )+1) \ \frac{\partial ^2 f}{\partial r^2}^2\Biggr ) r^4\nonumber \\&\quad +4 \frac{\partial \ f}{\partial r} \frac{\partial ^2 f}{\partial r^2} \Biggl (8 r^2 \cos ^2(\theta ) \frac{\partial ^3 f}{\partial r^3}^2 \sin ^4(\theta )\nonumber \\&\quad +(-20 \cos (2 \theta )+5 \cos (4 \theta )+47) \ \frac{\partial ^2 f}{\partial r^2}^2 \sin ^2(\theta )\nonumber \\&\quad +2 r (\cos \ (2 \theta )+7) \sin ^2(2 \theta ) \frac{\partial ^2 f}{\partial \ r^2} \frac{\partial ^3 f}{\partial r^3} \Biggr ) \ r^3+\frac{\partial f}{\partial r}^2 \Biggl (96 r^2 \sin ^2(\theta \ ) \frac{\partial ^3 f}{\partial r^3}^2 \cos ^4(\theta )\nonumber \\&\quad +(139 \ \cos (2 \theta )+226 \cos (4 \theta )+69 \cos (6 \theta )+718) \ \frac{\partial ^2 f}{\partial r^2}^2\nonumber \\&\quad +16 r (3 \cos (2 \theta )+11) \ \sin ^2(2 \theta ) \frac{\partial ^2 f}{\partial r^2} \ \frac{\partial ^3 f}{\partial r^3}\Biggr ) r^2\nonumber \\&\quad +16 \frac{\partial f}{\partial r}^3 \Biggl ((72 \cos (2 \theta )+19 (\cos (4 \theta \ )+7)) \frac{\partial ^2 f}{\partial r^2} \sin ^2(\theta ) \nonumber \\&\quad +2 r \ (\cos (2 \theta )+5) \sin ^2(2 \theta ) \frac{\partial ^3 \ f}{\partial r^3}\Biggr ) r\nonumber \\&\quad -32 (-14 \cos (2 \theta )+\cos (4 \ \theta )-35) \sin ^2(\theta ) \frac{\partial f}{\partial \ r}^4 \Biggr ) f^2\nonumber \\&\quad +8 \Biggl (16 r^2 v^2 (38 \cos (2 \theta )+9 \cos \ (4 \theta )+49) \sin ^2(\theta ) \frac{\partial f}{\partial \ r}^5\nonumber \\&\quad +4 r^3 v^2 \sin ^2(\theta ) \left( 96 r \frac{\partial ^3 f}{\ \partial r^3} \cos ^4(\theta )+(48 \cos (2 \theta )-25 \cos (4 \ \theta )+201) \frac{\partial ^2 f}{\partial r^2}\right) \ \frac{\partial f}{\partial r}^4\nonumber \\&\quad +2 \sin ^2(\theta ) \Biggl (r^4 \ v^2 \frac{\partial ^2 f}{\partial r^2} \Biggl (16 r (\cos (2 \ \theta )+5) \frac{\partial ^3 f}{\partial r^3} \cos ^2(\theta \ ) \nonumber \\&\quad +(-56 \cos (2 \theta )-25 \cos (4 \theta )+241) \ \frac{\partial ^2 f}{\partial r^2}\Biggr )-32 (7 \cos (2 \theta \ )+9)\Biggr ) \frac{\partial f}{\partial r}^3\nonumber \\&\quad +r \Biggl (v^2 (-148 \ \cos (2 \theta )-5 \cos (4 \theta )+137) \sin ^2(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^3 r^4\nonumber \\&\quad +32 \sin ^2(\theta ) \ \left( 3 v^2 \cos ^2(\theta ) \sin ^2(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^2 r^4-7 \cos (2 \theta \ )-9\right) \frac{\partial ^3 f}{\partial r^3} r\nonumber \\&\quad +16 (-16 \cos (2 \ \theta )+\cos (4 \theta )-49) \frac{\partial ^2 f}{\partial \ r^2}\Biggr ) \frac{\partial f}{\partial r}^2\nonumber \\&\quad +4 r^2 \Biggl (-r^2 (7 \ \cos (2 \theta )+9) \frac{\partial ^3 f}{\partial r^3}^2 \sin \ ^2(\theta )\nonumber \\&\quad +4 r \frac{\partial ^2 f}{\partial r^2} \left( v^2 \ \cos ^2(\theta ) \sin ^2(\theta ) \frac{\partial ^2 \ f}{\partial r^2}^2 r^4-13 \cos (2 \theta )-23\right) \ \frac{\partial ^3 f}{\partial r^3} \sin ^2(\theta )\nonumber \\&\quad + \ \frac{\partial ^2 f}{\partial r^2}^2 \left( 19 r^4 v^2 \ \frac{\partial ^2 f}{\partial r^2}^2 \sin ^6(\theta )+20 \cos (2 \ \theta )-17 \cos (4 \theta )-131\right) \Biggr ) \frac{\partial \ f}{\partial r}\nonumber \\&\quad \!+\!2 r^3 \frac{\partial ^2 f}{\partial r^2} \ \Biggl (r^4 v^2 (1\!-\!3 \cos (2 \theta )) \sin ^4(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^4\!+\!(56 \cos (2 \theta )\!-\!30 \ \cos (4 \theta )\!-\!58) \frac{\partial ^2 f}{\partial r^2}^2 \nonumber \\&\quad +16 r (\ \cos (2 \theta )-2) \sin ^2(\theta ) \frac{\partial ^3 \ f}{\partial r^3} \frac{\partial ^2 f}{\partial r^2}-4 r^2 \sin \ ^2(\theta ) \frac{\partial ^3 f}{\partial r^3}^2\Biggr )\Biggr ) \ f\nonumber \\&\quad +2 r \Biggl (48 r^2 v^2 \cos ^2(\theta ) (38 \cos (2 \theta )+3 \ \cos (4 \theta )-5) \frac{\partial f}{\partial r}^6 \nonumber \\&\quad +8 r^3 v^2 \ (-44 \cos (2 \theta )+9 \cos (4 \theta )-133) \sin ^2(\theta ) \ \frac{\partial ^2 f}{\partial r^2} \frac{\partial f}{\partial \ r}^5\nonumber \\&\quad +2 \Biggl (r^4 v^2 (132 \cos (2 \theta )+41 \cos (4 \theta \ )-341) \sin ^2(\theta ) \frac{\partial ^2 f}{\partial r^2}^2\nonumber \\&\quad -16 \ (56 \cos (2 \theta )+3 \cos (4 \theta )+37)\Biggr ) \ \frac{\partial f}{\partial r}^4\nonumber \\&\quad +32 r \Biggl (-r^4 v^2 (\cos (2 \ \theta )+18) \frac{\partial ^2 f}{\partial r^2}^3 \sin \ ^4(\theta )+2 r (3 \cos (2 \theta )+7) \frac{\partial ^3 \ f}{\partial r^3} \sin ^2(\theta )\nonumber \\&\quad -4 (13 \cos (2 \theta )+\cos \ (4 \theta )-2) \frac{\partial ^2 f}{\partial r^2}\Biggr ) \frac{\ \partial f}{\partial r}^3\nonumber \\&\quad +4 r^2 \Biggl (r^4 v^2 (14 \cos (2 \theta \ )-33) \sin ^4(\theta ) \frac{\partial ^2 f}{\partial r^2}^4\nonumber \\&\quad +16 \ (-17 \cos (2 \theta )+2 \cos (4 \theta )+12) \frac{\partial ^2 \ f}{\partial r^2}^2+8 r (11-5 \cos (2 \theta )) \sin ^2(\theta ) \ \frac{\partial ^3 f}{\partial r^3} \frac{\partial ^2 f}{\partial \ r^2}\nonumber \\&\quad -2 r^2 (5 \cos (2 \theta )+1) \sin ^2(\theta ) \ \frac{\partial ^3 f}{\partial r^3}^2\Biggr ) \frac{\partial f}{\partial r}^2-4 r^3 \sin ^2(\theta ) \frac{\partial ^2 f}{\partial r^2} \Biggl (9 r^4 v^2 \sin ^4(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^4\nonumber \\&\quad +24 (3 \cos (2 \theta )-5) \ \frac{\partial ^2 f}{\partial r^2}^2+4 r (3 \cos (2 \theta )-11) \ \frac{\partial ^3 f}{\partial r^3} \frac{\partial ^2 f}{\partial \ r^2}-4 r^2 \sin ^2(\theta ) \frac{\partial ^3 f}{\partial r^3}^2\ \Biggr ) \frac{\partial f}{\partial r}\nonumber \\&\quad +r^4 \sin ^2(\theta ) \ \frac{\partial ^2 f}{\partial r^2}^2 \Biggl (-3 r^4 v^2 \sin \ ^4(\theta ) \frac{\partial ^2 f}{\partial r^2}^4+(48-96 \cos (2 \ \theta )) \frac{\partial ^2 f}{\partial r^2}^2 \nonumber \\&\quad +48 r \sin ^2(\theta ) \frac{\partial ^3 f}{\partial r^3} \ \frac{\partial ^2 f}{\partial r^2}+4 r^2 \sin ^2(\theta ) \ \frac{\partial ^3 f}{\partial r^3}^2\Biggr )\Biggr )\Biggr )\Biggr ]. \end{aligned}$$
(A4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodal, J. A Closer Look at Natário’s Zero-Expansion Warp Drive. Int J Theor Phys 63, 168 (2024). https://doi.org/10.1007/s10773-024-05700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05700-0

Keywords

Navigation