Log in

β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The inflammatory activation of microglia has double-edged effects in central nervous system (CNS) diseases. The ligand-activated transcriptional factor peroxisome proliferator-activated receptor γ (PPARγ) inhibits the inflammatory response. β-1,4-Galactosyltransferase Ι (β1, 4GalT1) mediates N-glycosylation. In this study, the N-glycosylation of PPARγ, as well as two N-linked glycosylation sites in its DNA binding domain (DBD), was identified. Disruption of both sites by site-directed mutagenesis completely abrogated the N-glycosylation of PPARγ. PPAR wild-type (WT) transfection inhibited the inflammatory activation of microglia, while the anti-inflammatory function of unglycosylated PPARγ was down-regulated. In addition, β1, 4GalT1 was shown to interact with PPARγ and to mediate PPARγ glycosylation. β1, 4GalT1 promoted PPARγ’s anti-transcription and anti-inflammatory functions. Collectively, our findings define that β-1, 4GalT1 mediated PPARγ glycosylation to attenuate the inflammatory activation of microglia, which has implications for potential therapies for CNS inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chitnis, T., and H.L. Weiner. 2017. CNS inflammation and neurodegeneration. The Journal of Clinical Investigation 127: 3577–3587.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Ruan W, Mi J, Xu J, Wang H, Cao Z, et al. Balasubramide derivative 3C modulates microglia activation via CaMKKbeta-dependent AMPK/PGC-1alpha pathway in neuroinflammatory conditions. Brain, Behavior, and Immunity 2017.

  3. Lim H, Lee H, Noh K, Lee SJ. IKK/NF-kappa B-Dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017; 158:1666–1677.

  4. Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica et Biophysica Acta 2016; 1862:339–351.

  5. Arafah, K., D. Croix, J. Vizioli, A. Desmons, I. Fournier, and M. Salzet. 2013. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 61: 636–649.

    Article  PubMed  Google Scholar 

  6. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 2017.

  7. Narala, V.R., P.A. Subramani, V.R. Narasimha, F.B. Shaik, and K. Panati. 2014. The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation. International Immunopharmacology 23: 283–287.

    Article  PubMed  CAS  Google Scholar 

  8. Martin, H. 2010. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research 690: 57–63.

    Article  PubMed  CAS  Google Scholar 

  9. Griffiths, H.R., D. Gao, and C. Pararasa. 2017. Redox regulation in metabolic programming and inflammation. Redox Biology 12: 50–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Han T, Liu M, Yang S. DJ-1 alleviates angiotensin II-induced endothelial progenitor cell damage by activating the PPARgamma/HO-1 pathway. Journal of Cellular Biochemistry 2017.

  11. Cai, W., T. Yang, H. Liu, L. Han, K. Zhang, X. Hu, X. Zhang, K.J. Yin, Y. Gao, M.V.L. Bennett, R.K. Leak, and J. Chen. 2017. Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. Progress in Neurobiology.

  12. Pu, Y., and A. Veiga-Lopez. 2017. PPARgamma agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cellular & Molecular Biology Letters 22: 6.

    Article  CAS  Google Scholar 

  13. Kim, J.C. 2016. The effect of exercise training combined with PPARgamma agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats. J Exerc Nutrition Biochem 20: 42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tol, M.J., R. Ottenhoff, M. van Eijk, N. Zelcer, J. Aten, S.M. Houten, D. Geerts, C. van Roomen, M.C. Bierlaagh, S. Scheij, M.A. Hoeksema, J.M. Aerts, J.S. Bogan, G.W. Dorn 2nd, C.A. Argmann, and A.J. Verhoeven. 2016. A PPARgamma-Bnip3 Axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity. Diabetes 65: 2591–2605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pawlak, M., P. Lefebvre, and B. Staels. 2015. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology 62: 720–733.

    Article  PubMed  CAS  Google Scholar 

  16. Merlin, J., M. Sato, C. Nowell, M. Pakzad, R. Fahey, J. Gao, et al. 2017. The PPARgamma agonist rosiglitazone promotes the induction of brite adipocytes, increasing beta-adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling 42: 54–66.

    Article  PubMed  CAS  Google Scholar 

  17. Niu, Z., Q. Shi, W. Zhang, Y. Shu, N. Yang, B. Chen, Q. Wang, X. Zhao, J. Chen, N. Cheng, X. Feng, Z. Hua, J. Ji, and P. Shen. 2017. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nature Communications 8: 766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ricote, M., J. Huang, L. Fajas, A. Li, J. Welch, J. Najib, J.L. Witztum, J. Auwerx, W. Palinski, and C.K. Glass. 1998. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America 95: 7614–7619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hsu, W.J., N.C. Wildburger, S.J. Haidacher, M.N. Nenov, O. Folorunso, A.K. Singh, et al. 2017. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Experimental Neurology 295: 1–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Hennet, T. 2002. The galactosyltransferase family. Cellular and Molecular Life Sciences 59: 1081–1095.

    Article  PubMed  CAS  Google Scholar 

  21. Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, N. Hashimoto, H. Kawashima, M. Hirose, M. Miyasaka, S. Takasaki, and Y. Iwakura. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood 102: 1678–1685.

    Article  PubMed  CAS  Google Scholar 

  22. Guo, S., T. Sato, K. Shirane, and K. Furukawa. 2001. Galactosylation of N-linked oligosaccharides by human beta-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 11: 813–820.

    Article  PubMed  CAS  Google Scholar 

  23. Ujita, M., A.K. Misra, J. McAuliffe, O. Hindsgaul, and M. Fukuda. 2000. Poly-N-acetyllactosamine extension in N-glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase gene family. The Journal of Biological Chemistry 275: 15868–15875.

    Article  PubMed  CAS  Google Scholar 

  24. Quentin, E., A. Gladen, L. Roden, and H. Kresse. 1990. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: Galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proceedings of the National Academy of Sciences of the United States of America 87: 1342–1346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nishie, T., Y. Hikimochi, K. Zama, Y. Fukusumi, M. Ito, H. Yokoyama, C. Naruse, M. Ito, and M. Asano. 2010. Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20: 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  26. Tokuda, N., S. Numata, X. Li, T. Nomura, and M. Takizawa. 2013. Kondo Y, et al. beta4GalT6 is involved in the synthesis of lactosylceramide with less intensity than beta4GalT5. Glycobiology 23: 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Z.N., L. Gong, S. Lv, J. Li, X. Tai, W. Cao, B. Peng, S. Qu, W. Li, C. Zhang, and B. Luan. 2016. SIK2 regulates fasting-induced PPARalpha activity and ketogenesis through p300. Scientific Reports 6: 23317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Giulian, D., and T.J. Baker. 1986. Characterization of ameboid microglia isolated from develo** mammalian brain. The Journal of Neuroscience 6: 2163–2178.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ruan, J., Z. Qi, L. Shen, Y. Jiang, Y. Xu, L. Lan, L. Luo, and Z. Yin. 2015. Crosstalk between JNK and NF-kappaB signaling pathways via HSP27 phosphorylation in HepG2 cells. Biochemical and Biophysical Research Communications 456: 122–128.

    Article  PubMed  CAS  Google Scholar 

  30. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ahmadian, M., J.M. Suh, N. Hah, C. Liddle, A.R. Atkins, M. Downes, and R.M. Evans. 2013. PPARgamma signaling and metabolism: The good, the bad and the future. Nature Medicine 19: 557–566.

    Article  PubMed  CAS  Google Scholar 

  32. Bojarova, P., R.R. Rosencrantz, L. Elling, and V. Kren. 2013. Enzymatic glycosylation of multivalent scaffolds. Chemical Society Reviews 42: 4774–4797.

    Article  PubMed  CAS  Google Scholar 

  33. Dall'Olio, F., V. Vanhooren, C.C. Chen, P.E. Slagboom, M. Wuhrer, and C. Franceschi. 2013. N-glycomic biomarkers of biological aging and longevity: A link with inflammaging. Ageing Research Reviews 12: 685–698.

    Article  PubMed  CAS  Google Scholar 

  34. Javed, H., S. Azimullah, S.B. Abul Khair, S. Ojha, and M.E. Haque. 2016. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neuroscience 17: 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cao, Q., A. Karthikeyan, S.T. Dheen, C. Kaur, and E.A. Ling. 2017. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3beta) and NF-kappaB/p65 signalling. PLoS One 12: e0186764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Crosby, M.B., J. Svenson, G.S. Gilkeson, and T.K. Nowling. 2005. A novel PPAR response element in the murine iNOS promoter. Molecular Immunology 42: 1303–1310.

    Article  PubMed  CAS  Google Scholar 

  37. Fujimoto, Y., T. Shiraki, Y. Horiuchi, T. Waku, A. Shigenaga, A. Otaka, T. Ikura, K. Igarashi, S. Aimoto, S.I. Tate, and K. Morikawa. 2010. Proline cis/trans-isomerase Pin1 regulates peroxisome proliferator-activated receptor gamma activity through the direct binding to the activation function-1 domain. The Journal of Biological Chemistry 285: 3126–3132.

    Article  PubMed  CAS  Google Scholar 

  38. Diezko, R., and G. Suske. 2013. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor gamma (PPARgamma) activation function 1 (AF1) domain. PLoS One 8: e66947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kliewer, S.A., K. Umesono, D.J. Noonan, R.A. Heyman, and R.M. Evans. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Juge-Aubry, C., A. Pernin, T. Favez, A.G. Burger, W. Wahli, C.A. Meier, and B. Desvergne. 1997. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. The Journal of Biological Chemistry 272: 25252–25259.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, L., M. Zhu, M. Li, Y. Du, S. Duan, Y. Huang, et al. 2017. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-gamma/NF-kappaB signal pathway. Oncotarget 8: 55384–55393.

    PubMed  PubMed Central  Google Scholar 

  42. Kim, J.S., Y.H. Lee, Y.U. Chang, and H.K. Yi. 2017. PPARgamma regulates inflammatory reaction by inhibiting the MAPK/NF-kappaB pathway in C2C12 skeletal muscle cells. Journal of Physiology and Biochemistry 73: 49–57.

    Article  PubMed  CAS  Google Scholar 

  43. Huang, D., Q. Zhao, H. Liu, Y. Guo, and H. Xu. 2016. PPAR-alpha agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. Journal of Molecular Neuroscience 59: 544–553.

    Article  PubMed  CAS  Google Scholar 

  44. Assuncao, L.S., K.G. Magalhaes, A.B. Carneiro, R. Molinaro, P.E. Almeida, G.C. Atella, et al. 2017. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARgamma dependent mechanisms. Biochimica et Biophysica Acta 1862: 246–254.

    Article  PubMed  CAS  Google Scholar 

  45. Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.

    Article  PubMed  CAS  Google Scholar 

  46. Carta, A.R., and A. Pisanu. 2013. Modulating microglia activity with PPAR-gamma agonists: A promising therapy for Parkinson's disease? Neurotoxicity Research 23: 112–123.

    Article  PubMed  CAS  Google Scholar 

  47. Rai, A., S. Tripathi, R. Kushwaha, P. Singh, P. Srivastava, S. Sanyal, and S. Bandyopadhyay. 2014. CDK5-induced p-PPARgamma(Ser 112) downregulates GFAP via PPREs in develo** rat brain: Effect of metal mixture and troglitazone in astrocytes. Cell Death & Disease 5: e1033.

    Article  CAS  Google Scholar 

  48. Zhang, Y., C. Chen, Y. Jiang, S. Wang, X. Wu, and K. Wang. 2017. PPARgamma coactivator-1alpha (PGC-1alpha) protects neuroblastoma cells against amyloid-beta (Abeta) induced cell death and neuroinflammation via NF-kappaB pathway. BMC Neuroscience 18: 69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Choi, M.J., E.J. Lee, J.S. Park, S.N. Kim, E.M. Park, and H.S. Kim. 2017. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-gamma signaling pathway. Biochemical Pharmacology 144: 120–131.

    Article  PubMed  CAS  Google Scholar 

  50. Han, Q., Q. Yuan, X. Meng, J. Huo, Y. Bao, and G. **e. 2017. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-gamma. Oncotarget 8: 42001–42006.

    PubMed  PubMed Central  Google Scholar 

  51. Ji, H., H. Wang, F. Zhang, X. Li, L. **ang, and S. Aiguo. 2010. PPARgamma agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflammation Research 59: 921–929.

    Article  PubMed  CAS  Google Scholar 

  52. Chacko, B.K., D.W. Scott, R.T. Chandler, and R.P. Patel. 2011. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor gamma ligands. The Journal of Biological Chemistry 286: 38738–38747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Green, R.S., E.L. Stone, M. Tenno, E. Lehtonen, M.G. Farquhar, and J.D. Marth. 2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27: 308–320.

    Article  PubMed  CAS  Google Scholar 

  54. Seet, B.T., I. Dikic, M.M. Zhou, and T. Pawson. 2006. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology 7: 473–483.

    Article  PubMed  CAS  Google Scholar 

  55. Jackson, S.P., and R. Tjian. 1988. O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell 55: 125–133.

    Article  PubMed  CAS  Google Scholar 

  56. Gewinner, C., G. Hart, N. Zachara, R. Cole, C. Beisenherz-Huss, and B. Groner. 2004. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. The Journal of Biological Chemistry 279: 3563–3572.

    Article  PubMed  CAS  Google Scholar 

  57. Ahmad, I., D.C. Hoessli, E. Walker-Nasir, M.I. Choudhary, S.M. Rafik, A.R. Shakoori, and Nasir-ud-Din. 2006. Phosphorylation and glycosylation interplay: Protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family. Journal of Cellular Biochemistry 99: 706–718.

    Article  PubMed  CAS  Google Scholar 

  58. Chan, C.P., T.Y. Mak, K.T. Chin, I.O. Ng, and D.Y. **. 2010. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. Journal of Cell Science 123: 1438–1448.

    Article  PubMed  CAS  Google Scholar 

  59. Molyneux, K., D. Wimbury, I. Pawluczyk, M. Muto, and J. Bhachu. 2017. Mertens PR, et al. beta1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney International 92: 1458–1468.

    Article  PubMed  CAS  Google Scholar 

  60. Mori, R., T. Kondo, T. Nishie, T. Ohshima, and M. Asano. 2004. Impairment of skin wound healing in beta-1,4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. The American Journal of Pathology 164: 1303–1314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hu, L., H. Yang, J. Chen, X. Li, Z. Ben, X. He, et al. 2011. beta-1,4-galactosyltransferase-involved in lipopolysaccharide-induced adhesion of Schwann cells. Inflammation Research 60: 169–174.

    Article  PubMed  CAS  Google Scholar 

  62. Liu, X., C. Cheng, B. Shao, X. Wu, Y. Ji, X. Lu, and A. Shen. 2012. The functional interaction between CDK11p58 and beta-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 35: 1365–1377.

    Article  PubMed  CAS  Google Scholar 

  63. Marth, J.D., and P.K. Grewal. 2008. Mammalian glycosylation in immunity. Nature Reviews. Immunology 8: 874–887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tang, W., S. Weng, S. Zhang, W. Wu, L. Dong, X. Shen, S. Zhang, J. Gu, and R. Xue. 2013. Direct interaction between surface beta1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma. Biochemical and Biophysical Research Communications 434: 449–454.

    Article  PubMed  CAS  Google Scholar 

  65. Vanhooren, V., R.E. Vandenbroucke, S. Dewaele, E. Van Hamme, J.J. Haigh, T. Hochepied, et al. 2013. Mice overexpressing beta-1,4-galactosyltransferase I are resistant to TNF-induced inflammation and DSS-induced colitis. PLoS One 8: e79883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Parekh, R.B., A.G. Tse, R.A. Dwek, A.F. Williams, and T.W. Rademacher. 1987. Tissue-specific N-Glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal 6: 1233–1244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Schmieder, S., S. Lindenthal, and J. Ehrenfeld. 2001. Tissue-specific N-glycosylation of the ClC-3 chloride channel. Biochemical and Biophysical Research Communications 286: 635–640.

    Article  PubMed  CAS  Google Scholar 

Download references

FUNDING INFORMATION

This work was supported in part by the National Natural Science Foundation of China (Nos. 81401365), the Nantong Science and Technology Innovation Project (No. MS12015056), the 14th Six Talents Peak Project of Jiangsu Province (No. SWYY-058), the Undergraduate Innovation Program of Jiangsu Province High School (No. 201610304071Y), the Undergraduate Innovation Program of Nantong University (No. 2017147), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aolei Sun.

Ethics declarations

The animal study was approved by the ethics committee of Nantong University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Research involving Human Participants and/or Animals

All animal care and surgical procedures were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (National Research Council, 1996, USA) and were approved by the Chinese National Committee to Use of Experimental Animals for Medical Purposes, Jiangsu Branch. Additionally, the animal study was approved by the ethics committee of Nantong University.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

**aojuan Liu and Aihong Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, A., Ju, Y. et al. β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation. Inflammation 41, 1424–1436 (2018). https://doi.org/10.1007/s10753-018-0789-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0789-4

KEY WORDS

Navigation