Log in

Mycophenolate Mofetil Protects Septic Mice via the Dual Inhibition of Inflammatory Cytokines and PD-1

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Due to the imbalance between hyper-inflammation and hypo-inflammation, which are characterized by excessive cytokine productions and programmed death 1 (PD-1) upregulation, respectively, sepsis remains a highly lethal inflammatory syndrome with limited effective therapies. Mycophenolate mofetil (MMF), an immunosuppressant, has been reported to attenuate various inflammatory diseases. However, the role of MMF in sepsis therapy remains to be elucidated. C57BL-6J mice underwent cecal ligation and puncture (CLP) and were treated either with or without MMF. Survival rate and organ injuries were compared. Cytokine levels, bacteria clearance, apoptosis of spleen and peritoneal macrophages, and PD-1 expression were assessed. At the beginning of CLP, 60 mg/kg MMF administered by gavage significantly protected septic mice, which was evidenced by improved survival and attenuated organ injuries, decreased cytokines, lower bacterial loads, and alleviated immune cell apoptosis. In addition, immune cells in the MMF mice showed lower PD-1 expression and improved immune response to pathogeny stimuli. MMF protects septic mice via the dual inhibition of cytokine releasing and PD-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar, G., et al. 2011. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest 140 (5): 1223–1231.

    Article  PubMed  Google Scholar 

  2. Perner, A., et al. 2017. Sepsis: frontiers in supportive care, organisation and research. Intensive Care Medicine 43 (4): 496–508.

    Article  PubMed  Google Scholar 

  3. Ulloa, L., et al. 2009. Scientific and clinical challenges in sepsis. Current Pharmaceutical Design 15 (16): 1918–1935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. De Backer, D., et al. 2014. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 5 (1): 73–79.

    Article  PubMed  Google Scholar 

  5. Vincent, J.L., et al. 2013. Sepsis definitions: time for change. Lancet 381 (9868): 774–775.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Skirecki, T., et al. 2012. Sepsis immunopathology: perspectives of monitoring and modulation of the immune disturbances. Archivum Immunologiae et Therapiae Experimentalis (Warsz) 60 (2): 123–135.

    Article  CAS  Google Scholar 

  7. Rabuel, C., and A. Mebazaa. 2006. Septic shock: a heart story since the 1960s. Intensive Care Medicine 32 (6): 799–807.

    Article  PubMed  CAS  Google Scholar 

  8. Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases 13 (3): 260–268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. van der Poll, T., et al. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology.

  10. Tao, X., et al. 2017. Interleukin 36alpha attenuates sepsis by enhancing antibacterial functions of macrophages. The Journal of Infectious Diseases 215 (2): 321–332.

    PubMed  Google Scholar 

  11. Staatz, C.E., and S.E. Tett. 2014. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Archives of Toxicology 88 (7): 1351–1389.

    Article  PubMed  CAS  Google Scholar 

  12. Beduschi, M.G., et al. 2013. Mycophenolate mofetil has potent anti-inflammatory actions in a mouse model of acute lung injury. Inflammation 36 (3): 729–737.

    Article  PubMed  CAS  Google Scholar 

  13. Li, T., et al. 2014. Mycophenolate mofetil attenuates myocardial ischemia-reperfusion injury via regulation of the TLR4/NF-kappaB signaling pathway. Pharmazie 69 (11): 850–855.

    PubMed  CAS  Google Scholar 

  14. Huang, X., et al. 2009. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proceedings of the National Academy of Sciences of the United States of America 106 (15): 6303–6308.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y., et al. 2010. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Critical Care 14 (6): R220.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grant, C.R., et al. 2017. Immunosuppressive drugs affect interferon (IFN)-gamma and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. Clinical and Experimental Immunology 189 (1): 71–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Rittirsch, D., et al. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4 (1): 31–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. He, S., et al. 2016. Annexin A2 modulates ROS and impacts inflammatory response via IL-17 signaling in polymicrobial sepsis mice. PLoS Pathogens 12 (7): e1005743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. van der Poll, T., and S.M. Opal. 2008. Host-pathogen interactions in sepsis. The Lancet Infectious Diseases 8 (1): 32–43.

    Article  PubMed  CAS  Google Scholar 

  20. Shindo, Y., et al. 2015. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock 43 (4): 334–343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xu, S., et al. 2012. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway. Nature Immunology 13 (6): 551–559.

    Article  PubMed  CAS  Google Scholar 

  22. Bally, A.P., et al. 2015. NF-kappaB regulates PD-1 expression in macrophages. Journal of Immunology 194 (9): 4545–4554.

    Article  CAS  Google Scholar 

  23. Ward, P.A., and F. Fattahi. 2016. Editorial: Blockade of PD-1 and PD-L1 restores defective innate immune responses in leukocytes from septic humans. Journal of Leukocyte Biology 100 (6): 1229–1231.

    Article  PubMed  CAS  Google Scholar 

  24. Brown, K.A., et al. 2016. Targeting cytokines as a treatment for patients with sepsis: a lost cause or a strategy still worthy of pursuit? International Immunopharmacology 36: 291–299.

    Article  PubMed  CAS  Google Scholar 

  25. Deutschman, C.S., and K.J. Tracey. 2014. Sepsis: current dogma and new perspectives. Immunity 40 (4): 463–475.

    Article  PubMed  CAS  Google Scholar 

  26. van Vught, L.A., et al. 2017. The host response in patients with sepsis develo** intensive care unit-acquired secondary infections. American Journal of Respiratory and Critical Care Medicine 196 (4): 458–470.

    Article  PubMed  Google Scholar 

  27. Asberg, A., et al. 2010. Effects of the intensity of immunosuppressive therapy on outcome of treatment for CMV disease in organ transplant recipients. American Journal of Transplantation 10 (8): 1881–1888.

  28. Assfalg, V., et al. 2010. Combined immunosuppressive and antibiotic therapy improves bacterial clearance and survival of polymicrobial septic peritonitis. Shock 33 (2): 155–161.

    Article  PubMed  CAS  Google Scholar 

  29. Li, J., et al. 2015. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Research 75 (3): 508–518.

    Article  PubMed  CAS  Google Scholar 

  30. Monneret, G., M. Gossez, and F. Venet. 2016. Sepsis in PD-1 light. Critical Care 20 (1): 186.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boomer, J.S., et al. 2011. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306 (23): 2594–2605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. He, X., et al. 2011. Mycophenolic acid-mediated suppression of human CD4+ T cells: more than mere guanine nucleotide deprivation. American Journal of Transplantation 11 (3): 439–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (No. 81571931 to Er-zhen Chen, No. 81671901 to En-qiang Mao, No. 8167030165 to Jian Fei, and No. 81600501 to Ying Chen) and Shanghai Municipal Planning Commission of Science and Research Fund (No. 2016ZB0206 to Er-Zhen Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-zhen Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

Animal studies were approved by the Animal Ethics Committee of Rui** Hospital affiliated with Shanghai Jiao Tong University, School of Medicine (No. 092), and were in strict agreement with the international guidelines for care and use of laboratory animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Sw., Chen, H., Lu, Ml. et al. Mycophenolate Mofetil Protects Septic Mice via the Dual Inhibition of Inflammatory Cytokines and PD-1. Inflammation 41, 1008–1020 (2018). https://doi.org/10.1007/s10753-018-0754-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0754-2

KEY WORDS

Navigation