Log in

Mycophenolate Mofetil Has Potent Anti-inflammatory Actions in a Mouse Model of Acute Lung Injury

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Septic shock is a systemic inflammatory response syndrome, and it is the leading cause of death in intensive care units. Mycophenolate mofetil (MMF) is an immunosuppressant that has been shown to be effective in the treatment of various inflammatory diseases. In this study, the anti-inflammatory effect of MMF in a mouse model of acute lung injury (ALI) induced by lipopolysaccharide (LPS) was evaluated. ALI was induced by intrapleural injection of LPS (250 ng/cavity). The leukocyte migration, exudation, myeloperoxidase and adenosine deaminase activities, nitric oxide products, tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) levels, as well as mRNA expression of TNF-α and IL-1β, were evaluated. This study showed that MMF significantly decreased all parameters studied in a manner comparable to treatment with dexamethasone. In conclusion, MMF has important anti-inflammatory effects that may be useful as an auxiliary treatment for septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Alsberg, C.L., and O.F. Black. 1913. Contribution to the study of maize deterioration: Biochemical and toxicological investigations of Penicillium puberulum and Penicillium stoloniferum. Bull Burl Anim Ind US Dept Agr 270: 1–47.

    Google Scholar 

  2. Orvis, A.K., S.K. Wesson, T.S. Breza Jr., A.A. Church, C.L. Mitchell, and S.W. Watkins. 2009. Mycophenolate mofetil in dermatology. Journal of the American Academy of Dermatology 60: 183–199.

    Article  PubMed  Google Scholar 

  3. Dalal, P., M. Grafals, D. Chhabra, and L. Gallon. 2009. Mycophenolate mofetil: Safety and efficacy in the prophylaxis of acute kidney transplantation rejection. Therapeutics and Clinical Risk Management 5: 139–149.

    PubMed  CAS  Google Scholar 

  4. Sollinger, H.W. 2004. Mycophenolates in transplantation. Clinical Transplantation 18: 485–492.

    Article  PubMed  Google Scholar 

  5. Allison, A.C., and E.M. Eugui. 2005. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80(2 Suppl): S181–S190.

    Article  PubMed  CAS  Google Scholar 

  6. Sahin, G.M., S. Sahin, G. Kantarci, and H. Ergin. 2007. Mycophenolate mofetil treatment for therapy-resistant glomerulopathies. Nephrology (Carlton, Vic.) 12: 285–288.

    Article  CAS  Google Scholar 

  7. Sinclair, A., G. Appel, M.A. Dooley, E. Ginzler, D. Isenberg, D. Jayne, D. Wofsy, and N. Solomons. 2007. Mycophenolate mofetil as induction and maintenance therapy for lupus nephritis: Rationale and protocol for the randomized, controlled Aspreva Lupus Management Study (ALMS). Lupus 16: 972–980.

    Article  PubMed  CAS  Google Scholar 

  8. Heatwole, C., and E. Ciafaloni. 2008. Mycophenolate mofetil for myasthenia gravis: A clear and present controversy. Neuropsychiatric Disease and Treatment 4: 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  9. Aggarwal, R., and C.V. Oddis. 2011. Therapeutic approaches in myositis. Current Rheumatology Reports 13: 182–191.

    Article  PubMed  CAS  Google Scholar 

  10. Van Amersfoort, E.S., T.J. Van Berkel, and J. Kuiper. 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clinical Microbiology Reviews 16: 379–414.

    Article  PubMed  Google Scholar 

  11. Dalmarco, E.M., C.M.M. Córdova, and T.S. Fröde. 2011. Evidence of an anti-inflammatory effect of mycophenolate mofetil in a murine model of pleurisy. Experimental Lung Research 37: 399–407.

    Article  Google Scholar 

  12. Dalmarco, E.M., G. Astolfi, R. de Liz, C.M.M. Córdova, and T.S. Fröde. 2012. Modulatory effect of mycophenolate mofetil on carrageenan-induced inflammation in the mouse air pouch model. International Immunopharmacology 13: 476–482.

    Article  PubMed  CAS  Google Scholar 

  13. Bhattacharyya, S., A. Borthakur, S. Tyagi, R. Gill, M.L. Chen, P.K. Dudeja, and J.K. Tobacman. 2010. B-cell CLL/lymphoma 10 (BCL10) is required for NF-kB production by both canonical and noncanonical pathways and for NF-kB-inducing kinase (NIK) phosphorylation. Journal of Biological Chemistry 285: 522–530.

    Article  PubMed  CAS  Google Scholar 

  14. McGhan, L.J., and D.E. Jaroszewski. 2012. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury 43: 129–136.

    Article  PubMed  Google Scholar 

  15. Rao, T.S., J.L. Currie, A.F. Shaffer, and P.C. Isakson. 1993. Comparative evaluation of arachidonic acid (AA)- and tetradecanoylphorbol acetate (TPA)-induced dermal inflammation. Inflammation 17: 723–741.

    Article  PubMed  CAS  Google Scholar 

  16. Giusti, G., and B. Galanti. 1984. Adenosine-deaminase: Colorimetric method. In Methods of enzymatic analyses, 3rd ed, ed. H.U. Bergmeyer, 315–323. Weinheim: Verlang Chemie Press.

    Google Scholar 

  17. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite and [15 N]nitrate in biological fluids. Analytical Biochemistry 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  18. Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen, H.B., E.P. Rivers, F.M. Abrahamian, G.J. Moran, E. Abraham, S. Trzeciak, D.T. Huang, T. Osborn, D. Stevens, and D.A. Talan. 2006. Emergency Department Sepsis Education Program and Strategies to Improve Survival (ED-SEPSIS) Working Group. Severe sepsis and septic shock: Review of the Literature and Emergency Department and Management Guidelines. Annals of Emergency Medicine 48: 28–54.

    PubMed  Google Scholar 

  20. Hayashi, S., T. Yamada, M. Tsuneto, T. Yamane, M. Takahashi, L.D. Shultz, and H. Yamazaki. 2003. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. Journal of Immunology 171: 5130–5130.

    CAS  Google Scholar 

  21. Shin, E.S., H.J. Hwang, I.H. Kim, and T.J. Nam. 2011. A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. International Journal of Molecular Medicine 28: 809–815.

    PubMed  CAS  Google Scholar 

  22. Ronco, C., P. Piccini, and M.H. Rosner. 2010. Endotoxemia and endotoxin shock: Disease, diagnosis and therapy. Contributions to Nephrology 167: 1–13.

    Article  Google Scholar 

  23. Opal, S.M. 2007. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. International Journal of Medical Microbiology 297: 365–377.

    Article  PubMed  CAS  Google Scholar 

  24. Dellinger, R.P., J.M. Carlet, H. Masur, H. Gerlach, T. Calandra, J. Cohen, J. Gea-Banacloche, D. Keh, J.C. Marshall, M.M. Parker, G. Ramsay, J.L. Zimmerman, J.L. Vincent, and M.M. Levy. 2004. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Intensive Care Medicine 30: 536–555.

    Article  PubMed  Google Scholar 

  25. Boyer, A., K. Chadda, A. Salah, and D. Annane. 2006. Glucocorticoid treatment in patients with septic shock: Effects on vasopressor use and mortality. International Journal of Clinical Pharmacology and Therapeutics 44: 309–318.

    PubMed  CAS  Google Scholar 

  26. Salomão, R., P.S. Martins, M.K. Brunialti, M.L. Fernandes, L.S. Martos, M.E. Mendes, N.E. Gomes, and O. Rigato. 2008. TLR signaling pathway in patients with sepsis. Shock 30(Suppl 1): 73–77.

    Article  PubMed  Google Scholar 

  27. Fröde, T.S., and Y.S. Medeiros. 2001. Myeloperoxidase and adenosine-deaminase levels in the pleural fluid leakage induced by carrageenan in the mouse model of pleurisy. Mediators of Inflammation 10: 223–227.

    Article  PubMed  Google Scholar 

  28. Lau, D., and S. Baldus. 2006. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacology and Therapeutics 111: 16–126.

    Article  PubMed  CAS  Google Scholar 

  29. Farivar, A.S., B. MacKinnon-Patterson, A.D. Barnes, and M.S. Mulligan. 2005. The effect of anti-inflammatory properties of mycophenolate mofetil on the development of lung reperfusion injury. The Journal of Heart and Lung Transplantation 24: 2235–2242.

    Article  PubMed  Google Scholar 

  30. Cauwels, A. 2007. Nitric oxide in shock. Kidney International 72: 557–565.

    Article  PubMed  CAS  Google Scholar 

  31. Cuzzocrea, S., E. Mazzon, G. Calabro, L. Dugo, A. De Sarro, F.A. van De Loo, and A.P. Caputi. 2000. Inducible nitric oxide synthase-knockout mice exhibit resistance to pleurisy and lung injury caused by carrageenan. American Journal of Respiratory and Critical Care Medicine 162: 1859–1866.

    Article  PubMed  CAS  Google Scholar 

  32. Jonsson, C.A., and H. Carlsten. 2002. Mycophenolic acid inhibits inosine 5′-monophosphate dehydrogenase and suppresses production of pro-inflammatory cytokines, nitric oxide, and LDH in macrophages. Cellular Immunology 216: 93–101.

    Article  PubMed  CAS  Google Scholar 

  33. Wu, Y., J. Dong, L. Yuan, C. Liang, K. Ren, W. Zhang, F. Fang, and J. Shen. 2008. Nephrin and podocin loss is prevented by mycophenolate mofetil in early experimental diabetic nephropathy. Cytokine 44: 85–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Dalmarco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beduschi, M.G., Guimarães, C.L., Buss, Z.S. et al. Mycophenolate Mofetil Has Potent Anti-inflammatory Actions in a Mouse Model of Acute Lung Injury. Inflammation 36, 729–737 (2013). https://doi.org/10.1007/s10753-013-9599-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9599-x

KEY WORDS

Navigation