Log in

High Serum Trypsin Levels and the −409 T/T Genotype of PRSS1 Gene Are Susceptible to Neonatal Sepsis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Neonatal sepsis remains an important and common cause of morbidity and mortality among newborn infants, especially in develo** countries. The aim of the present study was to determine whether serum trypsin levels and genotypes of cationic trypsinogen (PRSS1) gene could be served as markers for predicting neonatal sepsis. The serum trypsin levels and genotypes of PRSS1 were examined in both 50 infants with infection during neonatal period and 56 healthy neonates as controls. The infected infants were further subdivided into infants with sepsis group (n = 18) and infected infants without sepsis (n = 32). The genotype of PRSS1 was analyzed by direct sequencing, and the serum trypsin level was measured by immunoassay. It showed that the median value of serum trypsin was significantly higher in infected infants (31.90 ng/mL) than in controls (12.85 ng/mL; P = 0.030). More importantly, sepsis subgroup (50.95 ng/mL) had significantly higher median serum trypsin than infected infants without sepsis subgroup (19.10 ng/mL) and controls (12.85 ng/mL) (P = 0.015 and P = 0.002, respectively). Additionally, the median serum trypsin levels were found significantly higher in infants who had T/T (37.90 ng/mL) genotype of PRSS1 compared with those who had C/T genotype (12.80 ng/mL; P = 0.005). This study suggested that serum trypsin and rs10273639 C/T of PRSS1 were revealed to be novel markers for predicting neonatal sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lawn, J.E., S. Cousens, and J. Zupan. 2005. 4 million neonatal deaths: when? where? why? Lancet 365: 891–900.

    Article  PubMed  Google Scholar 

  2. Chan, D.K., and L.Y. Ho. 1997. Usefulness of C-reactive protein in the diagnosis of neonatal sepsis. Singapore Medical Journal 38: 252–255.

    PubMed  CAS  Google Scholar 

  3. Vasiljevic, B., O. Antonovic, S. Maglajlic-Djukic, and M. Gojnic. 2008. The serum level of C-reactive protein in neonatal sepsis. Srpski Arhiv za Celokupno Lekarstvo 136: 253–257.

    Article  PubMed  Google Scholar 

  4. Ruiz-Alvarez, M.J., S. Garcia-Valdecasas, R. De Pablo, M. Sanchez Garcia, C. Coca, T.W. Groeneveld, et al. 2009. Diagnostic efficacy and prognostic value of serum procalcitonin concentration in patients with suspected sepsis. Journal of Intensive Care Medicine 24: 63–71.

    Article  PubMed  CAS  Google Scholar 

  5. Angeletti, S., F. Battistoni, M. Fioravanti, S. Bernardini, and G. Dicuonzo. 2013. Procalcitonin and mid-regional pro-adrenomedullin test combination in sepsis diagnosis. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC 51: 1059–1067.

    Article  CAS  Google Scholar 

  6. Gerrits, J.H., P.M. McLaughlin, B.N. Nienhuis, J.W. Smit, and B. Loef. 2013. Polymorphic mononuclear neutrophils CD64 index for diagnosis of sepsis in postoperative surgical patients and critically ill patients. Clinical Chemistry and Laboratory Medicine: CCLM/FESCC 51: 897–905.

    Article  CAS  Google Scholar 

  7. de Benedetti, F., C. Auriti, L.E. D’Urbano, M.P. Ronchetti, L. Rava, A. Tozzi, et al. 2007. Low serum levels of mannose binding lectin are a risk factor for neonatal sepsis. Pediatric Research 61: 325–328.

    Article  PubMed  Google Scholar 

  8. Abu-Maziad, A., K. Schaa, E.F. Bell, J.M. Dagle, M. Cooper, M.L. Marazita, et al. 2010. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatric Research 68: 323–329.

    Article  PubMed  Google Scholar 

  9. Ozkan, H., N. Koksal, M. Cetinkaya, S. Kilic, S. Celebi, B. Oral, et al. 2012. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia. Journal of Perinatology: Official Journal of the California Perinatal Association 32: 210–217.

    Article  CAS  Google Scholar 

  10. Wahab Mohamed, W.A., and M.A. Saeed. 2012. Mannose-binding lectin serum levels in neonatal sepsis and septic shock. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet 25: 411–414.

    Article  CAS  Google Scholar 

  11. Seitz, C., B. Isken, B. Heynisch, M. Rettkowski, T. Frensing, and U. Reichl. 2012. Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Applied Microbiology and Biotechnology 93: 601–611.

    Article  PubMed  CAS  Google Scholar 

  12. Kaljot, K.T., R.D. Shaw, D.H. Rubin, and H.B. Greenberg. 1988. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. Journal of Virology 62: 1136–1144.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Tsujimura, S., K. Saito, S. Nakayamada, and Y. Tanaka. 2008. Bolus infusion of human urinary trypsin inhibitor improves intractable interstitial pneumonia in patients with connective tissue diseases. Rheumatology (Oxford) 47: 907–913.

    Article  CAS  Google Scholar 

  14. Levy, M.M., A. Artigas, G.S. Phillips, A. Rhodes, R. Beale, T. Osborn, et al. 2012. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. The Lancet Infectious Diseases 12: 919–924.

    Article  PubMed  Google Scholar 

  15. Patuzzo, C., C. Castellani, C. Sagramoso, M. Gomez-Lira, D. Bonamini, F. Belpinati, et al. 2003. Cationic trypsinogen and pancreatic secretory trypsin inhibitor gene mutations in neonatal hypertrypsinaemia. European Journal of Human Genetics: EJHG 11: 93–96.

    Article  PubMed  CAS  Google Scholar 

  16. Itkonen, O., E. Koivunen, M. Hurme, H. Alfthan, T. Schroder, and U.H. Stenman. 1990. Time-resolved immunofluorometric assays for trypsinogen-1 and 2 in serum reveal preferential elevation of trypsinogen-2 in pancreatitis. The Journal of Laboratory and Clinical Medicine 115: 712–718.

    PubMed  CAS  Google Scholar 

  17. Oiva, J., O. Itkonen, R. Koistinen, K. Hotakainen, W.M. Zhang, E. Kemppainen, et al. 2011. Specific immunoassay reveals increased serum trypsinogen 3 in acute pancreatitis. Clinical Chemistry 57: 1506–1513.

    Article  PubMed  CAS  Google Scholar 

  18. Itkonen, O., L. Kylanpaa, W.M. Zhang, and U.H. Stenman. 2012. Reference intervals for and validation of recalibrated immunoassays for trypsinogen-1 and trypsinogen-2. Clinical Chemistry 58: 1494–1496.

    Article  PubMed  CAS  Google Scholar 

  19. Gao, F., Y.M. Li, G.L. Hong, Z.F. Xu, Q.C. Liu, Q.L. He, et al. 2013. PRSS1_p.Leu81Met mutation results in autoimmune pancreatitis. World Journal of Gastroenterology: WJG 19: 3332–3338.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gamble, D.R., A. Moffatt, and V. Marks. 1979. Serum immunoreactive trypsin concentrations in infectious and non-infectious illnesses and in juvenile diabetes. Journal of Clinical Pathology 32: 897–901.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Liu, Q., X. Lin, J. Liu, A. Liu, and F. Gao. 2012. The −409 C/T genotype of PRSS1 protects against pancreatic cancer in the Han Chinese population. Digestive Diseases and Sciences 57: 573–579.

    Article  PubMed  CAS  Google Scholar 

  22. Whitcomb, D.C., J. LaRusch, A.M. Krasinskas, L. Klei, J.P. Smith, R.E. Brand, et al. 2012. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nature Genetics 44: 1349–1354.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (no. 81201362, no. 81201590, and no. 21275028), Fujian Medical Innovations (no. 2012-CXB-21), and Education Department of Fujian Province (no. JA12133, no. JA12143) and Major Program of Medical and Health Foundation of Nan**g Military Region (12Z39)

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qicai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Xue, H., Chen, M. et al. High Serum Trypsin Levels and the −409 T/T Genotype of PRSS1 Gene Are Susceptible to Neonatal Sepsis. Inflammation 37, 1751–1756 (2014). https://doi.org/10.1007/s10753-014-9904-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9904-3

KEY WORDS

Navigation