Log in

Physiological and morphological assessments suggest opposite structural allocation strategies between closely related invasive clams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Respiration is a central physiological function related to the rates of energy acquisition, transformation, and use by organisms, while allometric relationships provide insight into patterns of allocation of that energy. To assess life strategy differences between closely related invasive species, we measured oxygen consumption rates, tissue mass, shell mass, and gill area of Corbicula fluminea and Corbicula largillierti clams. We compared patterns of metabolic scaling between the two species using model II regressions. Although oxygen consumption rates were strongly associated with gill area in both species, C. fluminea had consistently higher metabolic rates, shell thickness, and shell mass, but a lower tissue-to-shell mass ratio, than C. largillierti. These differences were more marked among small individuals. Our results suggest opposite structural allocation strategies between the two species. Corbicula fluminea invests more energy in the development of thicker shells in early life stages, which can be subsidized by higher metabolic rates than C. largillierti. By contrast, C. largillierti allocates more energy to tissue mass production. These differences may play a role in explaining contrasting competitive and colonization abilities and geographical distribution patterns between both species in invaded areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Row data generated in this survey are available from the Zenodo Digital Repository. https://doi.org/10.5281/zenodo.3542117 (Hünicken et al., 2019).

Code availability

Not applicable.

References

  • Anthony, K. R. N., S. R. Connolly & B. L. Willis, 2002. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography 47: 1417–1429.

    Article  Google Scholar 

  • Baldwin, B. S., M. S. Mayer, J. Dayton, N. Pau, J. Mendilla, M. Sullivan, A. Moore, A. Ma & E. L. Mills, 2002. Comparative growth and feeding in zebra and quagga mussels (Dreissena polymorpha and Dreissena bugensis): implications for North American lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 680–694.

    Article  Google Scholar 

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Belanger, S. E., 1991. The effect of dissolved oxygen, sediment, and sewage treatment plant discharges upon growth, survival and density of Asiatic clams. Hydrobiologia 218: 113–126.

    Article  CAS  Google Scholar 

  • Boulding, E. G., 1984. Crab-resistant features of shells of burrowing bivalves: decreasing vulnerability by increasing handling time. Journal of Experimental Marine Biology and Ecology 76: 201–223.

    Article  Google Scholar 

  • Burton, T., S. S. Killen, J. D. Armstrong & N. B. Metcalfe, 2011. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proceedings of the Royal Society 278: 3465–3473.

    CAS  Google Scholar 

  • Chase, M. E. & R. C. Bailey, 1999. The ecology of the Zebra Mussel (Dreissena polymorpha) in the lower Great Lakes of North America: I. Population dynamics and growth. Journal of Great Lakes Research 25: 107–121.

    Article  Google Scholar 

  • Darrigran, G., 2002. Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions 4: 145–156.

    Article  Google Scholar 

  • Darrigran, G. A. & M. E. Maroñas, 1989. Crecimiento de las poblaciones naturales de Corbicula fluminea (Müller, 1774) y C. largillierti (Phillippi, 1844) (Bivalvia: Sphaeriacea) en el litoral de Punta Blanca, Estuario del Río de la Plata, República Argentina. Comunicaciones De La Sociedad Malacológica Del Uruguay 7: 139–157.

    Google Scholar 

  • Djangmah, J. S., J. Davenport & S. E. Shumway, 1980. Oxygen consumption of the West African blood clam Anadara senilis. Marine Biology 56: 213–217.

    Article  Google Scholar 

  • Dudycha, J. L. & M. Lynch, 2005. Conserved ontogeny and allometric scaling of resource acquisition and allocation in the Daphniidae. Evolution 59: 565–576.

    Article  PubMed  Google Scholar 

  • Fly, E. K. & T. J. Hilbish, 2013. Physiological energetics and biogeographic range limits of three congeneric mussel species. Oecologia 172: 35–46.

    Article  PubMed  Google Scholar 

  • Gadgil, M. & W. H. Bossert, 1970. Life historical consequences of natural selection. The American Naturalist 104: 1–24.

    Article  Google Scholar 

  • Gayanilo, F. C., P. Sparre, & D. Pauly, 2002. FAO-ICLARM Stock Assessment Tools (FiSAT). Software version 1.2.0. FAO, Roma.

  • Glazier, D. S., 2005. Beyond the “3/4-power law”: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews of the Cambridge Philosophical Society 80: 611–662.

    Article  PubMed  Google Scholar 

  • Glazier, D. S., 2010. A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews 85: 111–138.

    Article  PubMed  Google Scholar 

  • Glazier, D. S., 2014. Metabolic scaling in complex living systems. Systems 2: 451–540.

    Article  Google Scholar 

  • Glazier, D. S., 2015. Is metabolic rate a universal ‘pacemaker’ for biological processes ? Biological Reviews 90: 377–407.

    Article  PubMed  Google Scholar 

  • Glazier, D. S. & D. A. Paul, 2017. Ecology of ontogenetic body-mass scaling of gill surface area in a freshwater crustacean. The Journal of Experimental Biology 220: 2120–2127.

    PubMed  Google Scholar 

  • Glazier, D. S., J. P. Gring, J. R. Holsopple & V. Gjoni, 2020. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. Journal of Experimental Biology 223: 1–13.

    Google Scholar 

  • Heino, M. & V. Kaitala, 1996. Optimal resource allocation between growth and reproduction in clams: why does indeterminate growth exist? Functional Ecology 10: 245–251.

    Article  Google Scholar 

  • Heino, M. & V. Kaitala, 1999. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. Journal of Evolutionary Biology 12: 423–429.

    Article  Google Scholar 

  • Hirst, A. G., D. S. Glazier & D. Atkinson, 2014. Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecology Letters 17: 1274–1281.

    Article  PubMed  Google Scholar 

  • Hochachka, P. W. & G. N. Somero, 2002. Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford University Press, New York:

    Google Scholar 

  • Hünicken, L. A., Sylvester, F. & Paolucci, E. M. Morphology and metabolic variation in two invasive Corbicula species in Argentina, Zenodo, https://doi.org/10.5281/zenodo.3542117 (2019).

  • Huxley, J. S., 1932. Problems of Relative Growth, Methuen & Co. LTD., London.

    Google Scholar 

  • Ituarte, C. F., 1981. Primera noticia acerca de la introducción de pelecípodos asiáticos en el área rioplatense. Neotrópica 27: 79–82.

    Google Scholar 

  • Ituarte, C. F., 1984. Aspectos biológicos de las poblaciones de Corbicula largillierti Phillippi (Mollusca Pelecypoda) en el Río de la Plata. Revista Del Museo De La Plata (nueva Serie) Tomo 13: 231–247.

    Google Scholar 

  • Ituarte, C. F., 1985. Growth dynamics in a natural population of Corbicula fluminea (Bivalvia Sphaeriacea) at Punta Atalaya, Rio de La Plata, Argentina. Studies on Neotropical Fauna and Environment 20: 217–225.

    Article  Google Scholar 

  • Ituarte, C. F., 1994. Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Paraná, Uruguay, and Río de La Plata basins. The Nautilus 107: 129–135.

    Google Scholar 

  • Johnson, K. D. & D. L. Smee, 2012. Size matters for risk assessment and resource allocation in bivalves. Marine Ecology Progress Series 462: 103–110.

    Article  Google Scholar 

  • Johnson, P. O. & L. C. Fay, 1950. The Johnson-Neyman technique, its theory and application. Psychometrika 15: 349–367.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, B. C., 1990. Bivalve Filter Feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology, Olsen & Olsen, Fredensborg.

    Google Scholar 

  • Karatayev, A. Y., S. E. Mastitsky & M. M. Hajduk, 2011. Differences in growth and survivorship of zebra and quagga mussels: size matters. Hydrobiologia 668: 183–194.

    Article  CAS  Google Scholar 

  • Killen, S. S., D. S. Glazier, E. L. Rezende, T. D. Clark, D. Atkinson, A. S. T. Willener & L. G. Halsey, 2016. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. The American Naturalist 187: 592–606.

    Article  PubMed  Google Scholar 

  • Labecka, A. M. & M. Czarnoleski, 2019. Patterns of growth, brooding and offspring size in the invasive mussel Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) from an anthropogenic heat island. Hydrobiologia. https://doi.org/10.1007/s10750-019-04141-9.

    Article  Google Scholar 

  • Lagos, M. E., C. R. White & D. J. Marshall, 2017. Do invasive species live faster? Mass­specific metabolic rate depends on growth form and invasion status. Functional Ecology 31: 2080–2086.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, Elsevier B.V, Amsterdam.

    Google Scholar 

  • Li, G., X. Lv, J. Zhou, C. Shen, D. **a, H. **e & Y. Luo, 2018. Are the surface areas of the gills and body involved with changing metabolic scaling with temperature? Journal of Experimental Biology 221: jeb174474.

    Article  PubMed  Google Scholar 

  • Liquin, F., L. A. Hünicken, F. Arrighetti, D. Davies, E. M. Paolucci & F. Sylvester, 2021. Parasitism and fitness of invaders: oligochaete Chaetogaster limnaei produces gill damage and increased respiration rates in freshwater Asian clams. Hydrobiologia 848: 2213–2223.

    Article  Google Scholar 

  • Mansur, M. C. D. & D. Pereira, 2006. Bivalves límnicos da bacia do rio dos Sinos, Rio Grande do Sul, Brasil (Bivalvia, Unionoida, Veneroida e Mytiloida). Revista Brasileira De Zoología 23: 1123–1147.

    Article  Google Scholar 

  • Mansur, M. C. D., A. S. Vanin, P. E. A. Bergonci & A. S. de Oliveira, 2012. Dinâmica reprodutiva de Corbicula fluminea e Corbicula largillierti. In Mansur, M. C. D., C. P. dos Santos, D. Pereira, I. C. Padula Paz, M. L. L. Zurita, M. T. Raya Rodriguez, M. V. Nehrke & P. E. A. Bergonci (eds), Moluscos límnicos invasores no Brasil: biologia, prevençâo e controle Redes Editora, Porto Alegre: 119–124.

    Google Scholar 

  • McMahon, R. F., 1979. Response to temperature and hypoxia in the oxygen consuption of the introduced asiatic freshwater Corbicula fluminea (Müler). Comparative Biochemistry and Physiology 63: 383–388.

    Article  Google Scholar 

  • McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 1235–1244.

    Article  Google Scholar 

  • McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American Freshwater Invertebrates Academic Press, San Diego: 331–429.

    Chapter  Google Scholar 

  • Mills, E. L., J. R. Chrisman, B. Baldwin, R. W. Owens, R. O’Gorman, T. Howell, E. F. Roseman & M. K. Raths, 1999. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario. Journal of Great Lakes Research 25: 187–197.

    Article  Google Scholar 

  • Niklas, K. J. & S. T. Hammond, 2019. On the interpretation of the normalization constant in the scaling equation. Frontiers in Ecology and Evolution 6: 212.

    Article  Google Scholar 

  • Novack-Gottshall, P. M., 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse paleozoic invertebrates. Palaios 23: 163–173.

    Article  Google Scholar 

  • Okie, J. G., 2013. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. The American Naturalist 181: 421–439.

    Article  PubMed  Google Scholar 

  • Ortmann, C. & M. K. Grieshaber, 2003. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. The Journal of Experimental Biology 206: 4167–4178.

    Article  CAS  PubMed  Google Scholar 

  • Paolucci, E. M. & E. V. Thuesen, 2015. Trophic relationships of Limnoperna fortunei with larval fishes. In Boltovskoy, D. (ed), Limnoperna fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel Invading Nature—Springer Series in Invasion Ecology. Springer International Publishing, Cham: 211–229.

    Google Scholar 

  • Paolucci, E. M., E. V. Thuesen, D. H. Cataldo & D. Boltovskoy, 2010. Veligers of an introduced bivalve, Limnoperna fortunei, are a new food resource that enhances growth of larval fish in the Paraná River (South America). Freshwater Biology 55: 1831–1844.

    Article  Google Scholar 

  • Paolucci, E. M., P. Sardiña, F. Sylvester, P. V. Perepelizin, A. Zhan, S. Ghabooli, M. E. Cristescu, M. D. Oliveira & H. J. Macisaac, 2014. Morphological and genetic variability in an alien invasive mussel across an environmental gradient in South America. Limnology and Oceanography 59: 400–412.

    Article  Google Scholar 

  • Pauly, D., & J. F. Caddy, 1985. A modification of Bhattacharya’s method for the analysis of mixtures of normal distributions. Food and Agricultural Organization of the United Nations.

  • Pereira, D., M. C. Dreher Mansur, L. D. S. Duarte, A. Schramm De Oliveira, D. Mansur Pimpao, C. T. Callil, C. F. Ituarte, E. Parada, S. Peredo, G. A. Darrigran, F. Scarabino, C. Clavijo, G. Lara, I. C. Miyahira, M. T. Raya Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.

    Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size, Cambridge Studies in Ecology, Cambridge.

    Book  Google Scholar 

  • Pettersen, A. K., M. D. Hall, C. R. White & D. J. Marshall, 2020. Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evolution Letters 4: 333–344.

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/.

  • Reshaid, Y., L. Cao, F. Brea, M. O. Blanche, S. Torres & G. Darrigran, 2017. Variation in the distribution of Corbicula species (Mollusca: Bivalvia: Corbiculidae) after 25 years of its introduction in the Río de la Plata, Argentina. Zoologia 34: 1–6.

    Article  Google Scholar 

  • Reyna, P. B., A. G. Morán & M. Tatián, 2013. Taxonomy, distribution and population structure of invasive Corbiculidae (Mollusca, Bivalvia) in the Suquía River basin, Córdoba, Argentina. Iheringia, Série Zoología 103: 77–84.

    Article  Google Scholar 

  • Ricciardi, A. & F. G. Whoriskey, 2004. Exotic species replacement: shifting dominance of dreissenid mussels in the Soulanges Canal, upper St. Lawrance River, Canada. Journal of the North American Benthological Society 23: 507–514.

    Article  Google Scholar 

  • Rodriguez, F. A., P. B. Reyna, T. Maggioni, D. R. Giménez & L. Torre, 2020. The role of temperature and oxygen availability on the distribution of Corbicula largillierti. Invertebrate Biology 139: 1–13.

    Article  Google Scholar 

  • Rumi, A., D. E. Gutiérrez Gregoric, V. Núñez & G. A. Darrigran, 2008. Malacología Latinoamericana. Moluscos de agua dulce de Argentina. Revista De Biología Tropical 56: 77–111.

    PubMed  Google Scholar 

  • Schmidt-Nielsen, K., 1975. Scaling in biology: the consequences of size. Journal of Experimental Zoology 194: 287–307.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, L., H. Cameron, C. R. White & D. J. Marshall, 2021. Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences 118: e2104942118.

    Article  CAS  Google Scholar 

  • Smith, R. J., 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology 140: 476–486.

    Article  PubMed  Google Scholar 

  • Sobral, P. & J. Widdows, 1997. Influence of hypoxia and anoxia on the physiological responses of the clam Ruditapes decussatus from southern Portugal. Marine Biology 127: 455–461.

    Article  Google Scholar 

  • Stearns, S. C., 1976. Life-History tactics: a review of the ideas. The Quarterly Review of Biology 51: 3–47.

    Article  CAS  PubMed  Google Scholar 

  • Steyermark, A. C., 2002. A high standard metabolic rate constrains juvenile growth. Zoology 105: 147–151.

    Article  PubMed  Google Scholar 

  • Stoeckmann, A., 2003. Physiological energetics of Lake Erie dreissenid mussels: a basis for the displacement of Dreissena polymorpha by Dreissena bugensis. Canadian Journal of Fisheries and Aquatic Sciences 60: 126–134.

    Article  Google Scholar 

  • Sylvester, F., J. Dorado, D. Boltovskoy, Á. Juárez & D. H. Cataldo, 2005. Filtration rates of the invasive pest bivalve Limnoperna fortunei as a function of size and temperature. Hydrobiologia 534: 71–80.

    Article  Google Scholar 

  • Sylvester, F., D. Boltovskoy & D. H. Cataldo, 2007. Fast response of freshwater consumers to a new trophic resource: predation on the recently introduced Asian bivalve Limnoperna fortunei in the lower Paraná river, South America. Austral Ecology 32: 403–415.

    Article  Google Scholar 

  • Thuesen, E. V., L. D. Rutherford, P. L. Brommer, K. Garrison, M. A. Gutowska & T. Towanda, 2005. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. The Journal of Experimental Biology 208: 2475–2482.

    Article  PubMed  Google Scholar 

  • Torre, L. & P. Reyna, 2013. Bivalvia, Veneroidea, Corbiculidae, Corbicula largillierti (Philippi, 1844): new distribution record in the Del Valle Central basin, Catamarca Province, Argentina. Check List 9: 165–166.

    Article  Google Scholar 

  • Tran, D., A. Boudou & J.-C. Massabuau, 2000. Mechanism for maintaining oxygen consumption under varying oxygenation levels in the freshwater clam Corbicula fluminea. Canadian Journal of Zoology 78: 2027–2036.

    Article  Google Scholar 

  • Tyner, E. H., H. A. Bootsma & B. M. Lafrancois, 2015. Dreissenid metabolism and ecosystem-scale effects as revealed by oxygen consumption. Journal of Great Lakes Research International Association for Great Lakes Research. 41: 27–37.

    Article  CAS  Google Scholar 

  • Warton, D. I., I. J. Wright, D. S. Falster & M. Westoby, 2006. Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society 81: 259–291.

    Article  PubMed  Google Scholar 

  • Warton, D. I., R. A. Duursma, D. S. Falster & S. Taskinen, 2012. smatr 3- an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3: 257–259.

    Article  Google Scholar 

  • Wesselmann, M., A. Anton, C. M. Duarte, I. E. Hendriks, S. Agustí, I. Savva, E. T. Apostolaki & N. Marbà, 2020. Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion. Proceedings of the Royal Society B: Biological Sciences 287: 20193001.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, G. B., J. H. Brown & B. J. Enquist, 2001. A general model for ontogenetic growth. Nature 413: 628–631.

    Article  CAS  PubMed  Google Scholar 

  • White, C. R., 2003. Allometric analysis beyond heterogeneous regression slopes: use of the Johnson-Neyman technique in comparative biology. Physiological and Biochemical Zoology 76: 135–140.

    Article  PubMed  Google Scholar 

  • Wilbur, K. M. & A. S. M. Saleuddin, 1983. Shell Formation. The Mollusca. Physiology, Part 1, Vol. 4. Academic Press Inc, New York: 235–287.

    Google Scholar 

  • Wright, S. P., 1992. Adjusted P-Values for simultaneous inference. Biometrics 48: 1005.

    Article  Google Scholar 

  • **ao, B., E. Li, Z. Du, R. Jiang, L. Chen & N. Yu, 2014. Effects of temperature and salinity on metabolic rate of the Asiatic clam Corbicula fluminea (Müller, 1774). SpringerPlus 3: 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erik Thuesen from The Evergreen State College for technical advice, and the Lacustrine Police of Cabra Corral Reservoir, Salta for granting access to the samples. We also thank two anonymous reviewers and Nicolás Bonel from CERZOS-CONICET for critical comments on an earlier draft of this article, and Ken Toyama from the University of Toronto for his help with JN analyses.

Funding

This research was funded by research grants from the Argentine Agencia Nacional de Promoción Científica y Tecnológica PICT 2015-3513 to E.M.P. and PICT 2016-0631 to F.S., and a PhD fellowship from CONICET to L.A.H.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the idea and designed the methodology used. LAH and FS collected the experimental organisms. LAH conducted laboratory procedures, led data analysis, and writing with supervision by FS and EMP. All authors contributed to the final version of the manuscript. FS and EMP provided funding acquisition, project administration, and resources.

Corresponding author

Correspondence to Leandro A. Hünicken.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Handling Editor: Manuel Lopes-Lima

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hünicken, L.A., Sylvester, F. & Paolucci, E.M. Physiological and morphological assessments suggest opposite structural allocation strategies between closely related invasive clams. Hydrobiologia 849, 2859–2875 (2022). https://doi.org/10.1007/s10750-022-04906-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04906-9

Keywords

Navigation