Log in

River damming affects energy flow and food web structure: a case study from a subtropical large river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The river discontinuity caused by damming can modify both the availability of production sources and the energy flow in riverine food webs. We hypothesized the carbon source support food web would vary among the reaches in response to changing in hydrogeomorphic conditions, and this variability further caused food web structure changes. To test our hypothesis, three different river reaches in the lower **sha River, China, were selected and the stable isotope ratios of basal sources and dominant consumers were analyzed in three seasons 2015. The relative importance of basal sources showed temporal and spatial difference to varying degrees. Seston were the most important carbon sources in supporting all consumers and the contributions increased from upstream to downstream. Riparian C3 plants played an important supplementary role in both reaches above the dam or only in the high flow period. Dam-induced flow alteration changed the trophic basis and the composition of food webs, resulting in a difference in the food web structures, and widening but with lowest complexity food web occurred in the downstream reach. The results further confirm that the differences in the hydrogeomorphologic conditions caused by dam construction can exert potential influence on riverine food web structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anonymous, 1976. Leptobotia elongata. In Fish Laboratory, I. O. H. (ed), Fishes in the Yangtze River. Science Press, Bei**g: 158–159.

  • Benedito-Cecilio, E., C. A. R. M. Araujo-lima, B. R. Forsberg, M. M. Bittencourt & L. C. Martinelli, 2000. Carbon sources of Amazonian fisheries. Fisheries Management and Ecology 7: 305–315.

    Article  Google Scholar 

  • Blanchette, M. L., A. M. Davis, T. D. Jardine & R. G. Pearson, 2013. Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Science 33: 142–158.

    Article  Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences 93: 10844–10847.

    Article  CAS  Google Scholar 

  • Cen, S. X., N. S. Qin & Y. Y. Li, 2012. Climatic characteristics of runoff variation in flood season in **sha River basin. Resources Science 34: 1538–1545. (in Chinese with English abstract).

    Google Scholar 

  • Chen, D. Q., J. B. Chang & H. B. Gu, 2005. Impacts of **sha River first stage project on ecology and environment of nature reserve and its countermeasures. Journal of Yangtze River Science Research Institute 22: 28–31. (in Chinese with English abstract).

    Google Scholar 

  • Clapcott, J. E. & S. E. Bunn, 2003. Can C4 plants contribute to aquatic food webs of subtropical streams? Freshwater Biology 48: 1105–1116.

    Article  Google Scholar 

  • Cross, W. F., C. V. Baxter, E. J. Rosi-Marshall, R. O. Hall, T. A. Kennedy, K. C. Donner, H. A. W. Kelly, S. E. Seegert, K. E. Behn & M. D. Yard, 2013. Food-web dynamics in a large river discontinuum. Ecological Monographs 83: 311–337.

    Article  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Doi, H., 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology 51: 57–64.

    Article  Google Scholar 

  • Doi, H., K.-H. Chang, T. Ando, H. Imai, S.-I. Nakano, A. Kajimoto & I. Katano, 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia 156: 363–371.

    Article  PubMed  Google Scholar 

  • Du, J., C. X. Shi & Y. Y. Zhou, 2010. Sediment yield pattern and its controlling factors in the Upper Yangtze River. Journal of Mountain Science 28: 22–29. (in Chinese with English abstract).

    Google Scholar 

  • Dunne, J. A., R. J. Williams & N. D. Martinez, 2002. Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences 99: 12917–12922.

    Article  CAS  Google Scholar 

  • Finlay, J. C., 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82: 1052–1064.

    Google Scholar 

  • Finlay, J. C., 2004. Patterns and controls of lotic algal stable carbon isotope ratios. Limnology and Oceanography 49: 850–861.

    Article  CAS  Google Scholar 

  • Finlay, J. C., S. Khandwala & M. E. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.

    Article  Google Scholar 

  • Gao, S. B., H. Y. Tang, Y. Qiao, Z. Yang & J. S. Chen, 2013. Status of fishery resources in the mainstream of the lower reaches of **sha River. Journal of Hydroecology 34: 44–49. (in Chinese with English abstract).

    Google Scholar 

  • Hadwen, W. L., M. Spears & M. J. Kennard, 2010. Temporal variability of benthic algal δ13C signatures influences assessments of carbon flows in stream food webs. Hydrobiologia 651: 239–251.

    Article  CAS  Google Scholar 

  • He, Z. H., 1985. Freshwater Biology. Agriculture Press, Bei**g: 1–352.

    Google Scholar 

  • Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495–508.

    Article  CAS  Google Scholar 

  • Hladyz, S., D. L. Nielsen, P. Suter & E. Krull, 2012. Temporal variations in organic carbon utilization by consumers in a lowland river. River Research and Applications 28: 513–528.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2007. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10: 1019–1033.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & A. A. Agostinho, 2008. Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs. Oikos 117: 984–995.

    Article  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. Bioscience 64: 870–882.

    Article  Google Scholar 

  • Jiang, Y., S. X. Fen, W. Ma & C. Li, 2009. Analysis of the impact of cascade hydropower development on fish in the lower **sha River. In Zhou, X. D. (ed.), Advances in Hydraulics and Hydroinformatics. **’an Jiaotong University Press, **an: 63–69. (in Chinese).

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Li, L., Q. W. Wei, J. M. Wu, H. Zhang, Y. Liu & X. **e, 2015. Diet of Leptobotia elongata revealed by stomach content analysis and inferred from stable isotope signatures. Environmental Biology of Fishes 98: 1965–1978.

    Article  Google Scholar 

  • Liu, X. Q., 2006. Food composition and food webs of zoobenthos in Yangtze Lakes. Doctoral dissertation, Institute of Hydrobiology, Chinese Academy of Sciences.

  • Lu, L., Q. Wang, G. Q. Wang, Y. L. Liu & C. S. Liu, 2016. Trend of climate change over the recent 60 years and its hydrological responses for **sha River basin. Journal of North China University of Water Resources and Electric Power (Natural Sciences Edition) 37: 16–21. (in Chinese with English abstract).

    CAS  Google Scholar 

  • McCann, K. S., 2000. The diversity–stability debate. Nature 405: 228.

    Article  CAS  PubMed  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  • Mor, J.-R., A. Ruhí, E. Tornés, H. Valcárcel, I. Muñoz & S. Sabater, 2018. Dam regulation and riverine food-web structure in a Mediterranean river. Science of the Total Environment 625: 301–310.

    Article  CAS  Google Scholar 

  • Morse, J. C., L. Yang & L. Tian, 1994. Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nan**g.

    Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.

    Article  Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: co** with too much variation. PLoS ONE 5: e9672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: co** with too many sources. Oecologia 136: 261–269.

    Article  PubMed  Google Scholar 

  • Pimm, S. L., J. H. Lawton & J. E. Cohen, 1991. Food web patterns and their consequences. Nature 350: 669.

    Article  Google Scholar 

  • **ram, M. A., K. J. Collier, D. P. Hamilton, B. J. Hicks & B. O. David, 2014. Spatial and temporal patterns of carbon flow in a temperate, large river food web. Hydrobiologia 729: 107–131.

    Article  CAS  Google Scholar 

  • Poff, N. L. & J. K. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.

    Article  CAS  Google Scholar 

  • Polis, G. A., W. B. Anderson & R. D. Holt, 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Power, M. E., W. E. Dietrich & J. C. Finlay, 1996. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management 20: 887–895.

    Article  CAS  PubMed  Google Scholar 

  • Power, M. E., J. R. Holomuzki & R. L. Lowe, 2013. Food webs in Mediterranean rivers. Hydrobiologia 719: 119–136.

    Article  Google Scholar 

  • Reid, D. J., G. P. Quinn, P. Lake & P. Reich, 2008. Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: a stable isotope study. Freshwater Biology 53: 2036–2050.

    Article  Google Scholar 

  • Riede, J. O., B. C. Rall, C. Banasek-Richter, S. A. Navarrete, E. A. Wieters, M. C. Emmerson, U. Jacob & U. Brose, 2010. Scaling of food-web properties with diversity and complexity across ecosystems. In Woodward, G. (ed.), Advances in Ecological Research, Vol. 42. Elsevier Academic Press, Burlington: 139–170.

    Google Scholar 

  • Roach, K. A., 2013. Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32: 283–298.

    Article  Google Scholar 

  • Roach, K. A., K. O. Winemiller & S. E. Davis, 2014. Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshwater Biology 59: 1278–1293.

    Article  CAS  Google Scholar 

  • Ruhí, A., I. Muñoz, E. Tornés, R. J. Batalla, D. Vericat, L. Ponsatí, V. Acuña, D. von Schiller, R. Marcé & G. Bussi, 2016. Flow regulation increases food-chain length through omnivory mechanisms in a Mediterranean river network. Freshwater Biology 61: 1536–1549.

    Article  Google Scholar 

  • Sabo, J. L., J. C. Finlay, T. Kennedy & D. M. Post, 2010. The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330: 965–967.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R. M., U. Brose, J. A. Dunne, R. O. Hall, S. Hladyz, R. L. Kitching, N. D. Martinez, H. Rantala, T. N. Romanuk, D. B. Stouffer & J. M. Tylianakis, 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecology & Evolution 27: 689–697.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos: 305–308.

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Article  Google Scholar 

  • Udy, J. W. & S. E. Bunn, 2001. Elevated delta N-15 values in aquatic plants from cleared catchments: why? Marine and Freshwater Research 52: 347–351.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. Mcintyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan & C. R. Liermann, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., B. Gu, J. Huang, X. Han, G. Lin, F. Zheng & Y. Li, 2014. Terrestrial contributions to the aquatic food web in the middle Yangtze River. PLoS ONE 9: e102473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winemiller, K. O., D. J. Hoeinghaus, A. A. Pease, P. C. Esselman, R. L. Honeycutt, D. Gbanaador, E. Carrera & J. Payne, 2011. Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a Mesoamerican coastal river. River Research and Applications 27: 791–803.

    Article  Google Scholar 

  • Woodland, R. J., P. Magnan, H. Glémet, M. A. Rodríguez & G. Cabana, 2012. Variability and directionality of temporal changes in δ 13 C and δ 15 N of aquatic invertebrate primary consumers. Oecologia 169: 199–209.

    Article  PubMed  Google Scholar 

  • Woodward, G. & A. G. Hildrew, 2002. Food web structure in riverine landscapes. Freshwater Biology 47: 777–798.

    Article  Google Scholar 

  • Xu, Y. G., Z. L. Deng, Z. T. Yu & X. J. Wei, 1981. The biological aspects of coreius heterodon (Bleeker) and the effects of proposed Sanxia Hydroelectirc Project on its resource. Acta Hydrobiologica Sinica 7: 271–294. (in Chinese with English abstract).

    Google Scholar 

  • Xu, C. J., K. X. Fan & T. G. **ao, 2010. Runoff characteristics and variation tendency of **sha River Basin. Yangtze River 41: 10–14. (in Chinese with English abstract).

    Google Scholar 

  • Yang, J. & J. Dai, 2016. Characteristics analysis of the water pollutants in the Panzhihua secton of **shajiang River. Environmental Science Survey 14: 61–66. (in Chinese with English abstract).

    Google Scholar 

  • Zeug, S. C. & K. O. Winemiller, 2008. Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89: 1733–1743.

    Article  PubMed  Google Scholar 

  • Zheng, J. X., S. B. Gao, S. Y. Chi, J. Hu, S. X. Li & J. X. Hu, 2014. Hydro-ecological assessment and protection strategies of **sha river downstream. Environmental Science & Technology 9: 174–179. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Ziwei Shen, Kaikai Du, Chuanshun Yang, and Bin Yang for their help in the field, and Ms. Yuan Ke for the stable isotope analysis. We greatly appreciate the anonymous reviewers for their helpful comments on the earlier version of the manuscript. This study was funded by the National Natural Science Foundation of China (Grant No. 51409262) and China Three Gorges Corporation (Program No. 0799555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Ni.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflicts of interest to declare.

Additional information

Handling editor: Michael Power

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, H., Li, Y., Sheng, Q. et al. River damming affects energy flow and food web structure: a case study from a subtropical large river. Hydrobiologia 847, 679–695 (2020). https://doi.org/10.1007/s10750-019-04130-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04130-y

Keywords

Navigation