Log in

Integrating atomistics and experiments in gaining deeper insights into fatigue crack propagation in silver

  • Research
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This research utilizes both single crystal and polycrystalline models to probe the fatigue crack propagation mechanism in pure silver via molecular dynamics (MD) simulations. A comprehensive validation approach at both micro and macro scales, incorporating transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and compact tension (CT) specimen fatigue testing, is developed to verify the reliability of simulation models and results. Simulation findings indicate that the initial crack orientation significantly influences crack propagation. As the crack advances within the crystal, two primary crack propagation mechanisms are discerned: (1) nano-voids appear at the crack tip, and the crack propagates by continuously aggregating with the nano-voids ahead; (2) the formation of Stair-rod dislocations and V-shape stacking faults due to dislocation reactions and slip band movements impedes crack propagation, accompanied by the dislocation reaction of Shockley partial dislocations (\(\tfrac{1}{6}\) <112>) generating Hirth dislocations (\(\tfrac{1}{6}\) <110>). The dislocation reaction is verified through the dislocation analysis of the crack tip area of the CT specimen after fatigue experiment by using TEM. In addition, the results of this study show that the angle between the direction of crack propagation and the grain boundary affects the fatigue crack propagation, e.g. when the angle is less than 60°, the crack rapidly propagates along the grain boundary. The orientation distribution function (ODF) results of EBSD can verify that the polycrystalline model containing 30 grains is a reliable model for the MD simulation of behavior of the crack tip of CT specimen. Lastly, the Paris law constants for pure silver are determined as m = 3.72 and lg C = − 10.77, providing a reference for the fatigue analysis and life prediction of silver components or silver soldering pots in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

Download references

Acknowledgements

This work is supported by a grant from the Key Program of the National Science Foundation of China (No: U23B2073).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yuan Huang; Software, Yinan **e; Fatigue experiment, Yinan **e and **aoli Hao; TEM calibration, Yinan **e and Yuan Huang. Supervision and guidance, Zumin Wang and Yuan Huang; Writing—review and editing, Yinan **e

Corresponding author

Correspondence to Yuan Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Y., Hao, X., Wang, Z. et al. Integrating atomistics and experiments in gaining deeper insights into fatigue crack propagation in silver. Int J Fract (2024). https://doi.org/10.1007/s10704-024-00796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10704-024-00796-1

Keywords

Navigation