Log in

Multi-scale simulations of the mechanical behaviors of the W-Cu joint interface with a diffusion layer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

At the interface of W-Cu after direct jointing, diffusion layers with a thickness of approximately 22 nm are present but often overlooked in simulations of mechanical properties. In this study, an interface model with a W-Cu diffusion layer is developed using molecular dynamics (MD). The effects of the diffusion layers on the elastic–plastic behaviors, dissipation mechanisms, and fracture properties of the interface are analyzed under mode-I (perpendicular to the interface) and mode-II (parallel to the interface). The results demonstrate that the interface model with a diffusion layer exhibits superior mechanical properties under mode-I and mode-II loading compared to the model without a diffusion layer. Furthermore, a multi-scale method based on the classical Paris law is proposed, combining MD and finite element methods to investigate the fatigue crack propagation of W-Cu bimetallic composites under cyclic loading and predict their fatigue life. The findings of this study are meaningful for improving the mechanical properties of W-Cu interface materials, predicting the material’s lifespan, and guiding related engineering applications.

Methods

In this study, the molecular dynamics simulations have been carried out by using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The visualization of results is performed using the Open Visualization Tool (OVITO). Common neighbor analysis (CNA) and dislocation analysis (DXA) in OVITO have been employed to capture the structural evolution. Finite element method simulations are performed in Ansys Workbench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Ye XB, Ding WY, He HY, Ding R, Chen JL, Pan BC (2018) An empirical law for the elastic moduli of component-segregated W/Cu compounds. J Alloys Compd 766:349–354

    CAS  Google Scholar 

  2. Gao Y, Yang T, Xue J, Yan S, Zhou S, Wang Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413(1):11–15

    CAS  Google Scholar 

  3. Wei B, Zhou R, Xu D, Chen R, Yu X, Chen PCheng J, (2022) Continuous W Cu functional gradient material from pure W to W Cu layer prepared by a modified sedimentation method. Nucl Eng Technol 54(12):4491–4498

    CAS  Google Scholar 

  4. Ma GC, Fan JLGong HR, (2018) Mechanical behavior of Cu-W interface systems upon tensile loading from molecular dynamics simulations. Comput Mater Sci 152:165–168

    CAS  Google Scholar 

  5. Yang Q, Lu C, Han Y, Chen X, Yang J, Huang J, Chen SYe Z (2022) Influence of Cu/W interfacial structure on the resistance against harmful helium atoms: a mechanism analysis. J Alloys Compd 903

  6. Niu Y, Lu D, Huang L, Zhao J, Zheng X, Chen G (2015) Comparison of W-Cu composite coatings fabricated by atmospheric and vacuum plasma spray processes. Vacuum 117:98–103

    CAS  Google Scholar 

  7. Lee SH, Kwon SY, Ham HJ (2012) Thermal conductivity of tungsten–copper composites. Thermochim Acta 542:2–5

    CAS  Google Scholar 

  8. Chen Y, Huang Y, Li F, Han L, Liu D, Luo L, Ma Z, Liu Y, Wang Z (2021) High-strength diffusion bonding of oxide-dispersion-strengthened tungsten and CuCrZr alloy through surface nano-activation and Cu plating. J. Mater Sci Technol 92:186–194

    CAS  Google Scholar 

  9. Wang H, Li F, Chen Y, Li C, Wang ZHuang Y (2022) Improved strength and heat transfer of W/Cu joints via surface nano-activation of W. Fusion Eng Des 182

  10. Zhang J, Huang Y, Liu Y, Wang Z (2018) Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper’s melting point. Mater Des 137:473–480

    CAS  Google Scholar 

  11. Chen Y, Liu Z, Liu C, Huang Y, Liu Y, Wang Z (2022) Interlocked interface of W-Y2O3/CuCrZr joint obtained by W–Y2O3 surface nanoporosification and Cu magnetron sputtering. Materials Characterization 193:112303

    CAS  Google Scholar 

  12. Aboud T, Weiss BZ, Chaim R (1995) Mechanical alloying of the immiscible system W-Cu. Nanostruct Mater 6(1):405–408

    CAS  Google Scholar 

  13. Jiang D, Long J, Cai M, Lin Y, Fan P, Zhang H, Zhong M (2017) Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining. Mater Des 114:185–193

    CAS  Google Scholar 

  14. Jiang D, Long J, Han J, Cai M, Lin Y, Fan P, Zhang H, Zhong M (2017) Comprehensive enhancement of the mechanical and thermo-mechanical properties of W/Cu joints via femtosecond laser fabricated micro/nano interface structures. Mater Sci Eng A 696:429–436

    CAS  Google Scholar 

  15. Liu B-B, **e J-X-H (2008) Fabrication of W-Cu functionally graded materials with high density by particle size adjustment and solid state hot press. Compos Sci Technol 68(6):1539–1547

    CAS  Google Scholar 

  16. Song J, Yu Y, Zhuang Z, Lian Y, Liu X, Qi Y (2013) Preparation of W-Cu functionally graded material coated with CVD–W for plasma-facing components. J Nucl Mater 442(1, Supplement 1):S208–S213

    CAS  Google Scholar 

  17. Zhao P, Guo S, Liu G, Chen Y, Li J (2014) Fabrication of W-Cu functionally graded material with improved mechanical strength. J Alloys Compd 601:289–292

    CAS  Google Scholar 

  18. Pitts RA, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin AS, Loarte A, Merola M, SashalaNaik A, Mitteau R, Sugihara M, Bazylev B, Stangeby PC (2013) A full tungsten divertor for ITER: physics issues and design status. J Nucl Mater 438:S48–S56

    CAS  Google Scholar 

  19. Chen L, Lian Y, Liu X (2014) Behavior of brazed W/Cu mockup under high heat flux loads. Plasma Sci Technol 16(3):278–282

    CAS  Google Scholar 

  20. Lian Y, Liu X, Feng F, Chen L, Cheng Z, Wang J, Chen J (2016) Manufacturing and high heat flux testing of brazed flat-type W/CuCrZr plasma facing components. Plasma Sci Technol 18(2):184–189

    CAS  Google Scholar 

  21. Liang CP, Fan JL, Gong HR (2017) Cohesion strength and atomic structure of W-Cu graded interfaces. Fusion Eng Des 117:20–23

    CAS  Google Scholar 

  22. Iwasaki T, Miura H (2001) Molecular dynamics analysis of adhesion strength of interfaces between thin films. J Mater Res 16(6):1789–1794

    CAS  Google Scholar 

  23. Iwasaki T (2000) Molecular dynamics study of adhesion strength and diffusion at interfaces between interconnect materials and underlay materials. Comput Mech 25(1):78–86

    Google Scholar 

  24. Mou N, Han L, Yao D, Pan Z, Li L, Cao LDuan M (2021) Manufacturing and high heat flux testing of flat-type W/Cu/CuCrZr mock-up by HIP assisted brazing process. Fusion Eng Des 169

  25. Fukuda M, Seki Y, Ezato K, Yokoyama K, Nishi HSuzuki S (2020) Effect of cyclic heat loading on pure tungsten for the ITER divertor. J Nucl Mater 542

  26. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285–1288

    CAS  Google Scholar 

  27. Ackland GJ, Thetford RJPM (1987) An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A 56:15–30

    CAS  Google Scholar 

  28. Arima T, Idemitsu K, Inagaki Y, Tsujita Y, Kinoshita M, Yakub E (2009) Evaluation of melting point of UO2 by molecular dynamics simulation. J Nucl Mater 389(1):149–154

    CAS  Google Scholar 

  29. Zeng T, Li FHuang Y (2021) Construction of an n-body potential for revealing the atomic mechanism for direct alloying of immiscible tungsten and copper. Materials 14(20)

  30. Lei M, Yang M, Ni X, Ma HXu S (2021) Experiment and simulation investigations on W/Cu components prepared by strong confinement thermal explosive welding. Nucl Mater Energy 29

  31. Finnis MW, Sinclair JE (2006) A simple empirical N-body potential for transition metals. Philos Mag A 50(1):45–55

    Google Scholar 

  32. Dai X, Li J, Guo H, Liu B (2007) Structural stability and characteristics of the metastable Ag–W phases studied by ab initio and molecular dynamics calculations. J Appl Phys 101:063512–063512

    Google Scholar 

  33. Wang K, Chen X, Chen X, Huang YWang Z (2022) Modified extended Finnis Sinclair potential for cubic crystal metal. Comput Mater Sci 213

  34. Wang K, Chen X, Huang S, Chen X, Wang Z, Huang Y (2023) Diffusion behavior determined by the new n-body potential in highly immiscible W/Cu system through molecular dynamics simulations. J Mater Res Technol 24:3731–3745

    CAS  Google Scholar 

  35. Gong HR, Kong LT, Lai WS, Liu BX (2003) Glass-forming ability determined by an n-body potential in a highly immiscible Cu-W system through molecular dynamics simulations. Phys Rev B 68(14):144201

    Google Scholar 

  36. Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69(14)

  37. Ji C, Cai X, Zhou Z, Dong F, Liu S, Gao B (2021) Effects of intermetallic compound layer thickness on the mechanical properties of silicon-copper interface. Mater Des 212

  38. Sazgar A, Movahhedy MR, Mahnama M, Sohrabpour S (2017) Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite. Mater Sci Eng A 679:116–122

    CAS  Google Scholar 

  39. Cheng Z, Wang H, Liu G-R (2021) Fatigue crack propagation in carbon steel using RVE based model. Eng Fract Mech 258

  40. Ma L, **ao S, Deng H, Hu W (2014) Molecular dynamics simulation of fatigue crack propagation in bcc iron under cyclic loading. Int J Fatigue 68:253–259

    CAS  Google Scholar 

  41. Lu M, Wang F, Zeng X, Chen W, Zhang J (2020) Cohesive zone modeling for crack propagation in polycrystalline NiTi alloys using molecular dynamics. Theor Appl Fract Mech 105

  42. Fu T, Peng X, Huang C, Weng S, Zhao Y, Wang Z, Hu N (2017) Strain rate dependence of tension and compression behavior in nano-polycrystalline vanadium nitride. Ceram Int 43(15):11635–11641

    CAS  Google Scholar 

  43. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963

    CAS  Google Scholar 

  44. Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2(2):279–286

    CAS  Google Scholar 

  45. Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L, Wang Z (2016) Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers. Mater Sci Eng A 658:1–7

    CAS  Google Scholar 

  46. Zhang Z, Wang B, Huang S, Wen B, Yang S, Zhang B, Lin C-T, Jiang N, ** Z, Guo D (2016) A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. Mater Des 106:313–320

    CAS  Google Scholar 

  47. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng 18(8):085001

    Google Scholar 

  48. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Google Scholar 

  49. Yasbolaghi R, Khoei AR (2020) Micro-structural aspects of fatigue crack propagation in atomistic-scale via the molecular dynamics analysis. Eng Fract Mech 226

  50. Machová A, Pokluda J, Uhnáková A, Hora P (2014) 3D atomistic studies of fatigue behaviour of edge crack (001) in bcc iron loaded in mode I and II. Int J Fatigue 66:11–19

    Google Scholar 

  51. Zhang Y, Yuan D, Ma L, Huang B, Li X, Deng H, **ao S, Hu W (2022) Crack growth in zirconium single crystal under cyclic loading: a molecular dynamics simulation. Phys Lett A 455:128506

    CAS  Google Scholar 

  52. Jian WW, Cheng GM, Xu WZ, Koch CC, Wang QD, Zhu YT, Mathaudhu SN (2013) Physics and model of strengthening by parallel stacking faults. Appl Phys Lett 103(13)

  53. Gupta P, Pal S, Yedla N (2016) Molecular dynamics based cohesive zone modeling of Al (metal)–Cu50Zr50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms. Mater Des 105:41–50

    CAS  Google Scholar 

  54. Shu X-T, **ao S-f, Deng H-q, Ma L, Hu W (2017) Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading. J Mater Res 32(8):1474–1483

    CAS  Google Scholar 

  55. Zhuang Q, Mou N, Han L, Li Q, Li L, Zi P, Wang Z, Chen Z, Peng W, Cao L, Yao D (2022) High heat flux testing for W/Cu monoblock PFUs with varying defects. Fusion Eng Des 179

  56. Li C, Zhu D, Ding R, Wang B, Chen J, Gao B, Lei Y (2020) Characterization on the melting failure of CuCrZr cooling tube of W/Cu monoblocks during plasma operations in EAST. Nucl Mater Energy 25

  57. **e ZM, Miao S, Liu R, Zeng LF, Zhang T, Fang QF, Liu CS, Wang XP, Lian YY, Liu X, Cai LH (2017) Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices. J Nucl Mater 496:41–53

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0703904 and 2017YFE0302600) and the National Natural Science Foundation of China (Grant No. 51471114).

Author information

Authors and Affiliations

Authors

Contributions

**n Chen: investigation, writing—original draft, data curation, formal analysis. Yinan **e: investigation, methodology, reviewing and editing. Yuan Huang: conceptualization, methodology, reviewing and editing.

Corresponding author

Correspondence to Yuan Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., **e, Y. & Huang, Y. Multi-scale simulations of the mechanical behaviors of the W-Cu joint interface with a diffusion layer. J Mol Model 29, 247 (2023). https://doi.org/10.1007/s00894-023-05633-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05633-1

Keywords

Navigation