Log in

Two-step emergence: the quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Like Cervantes’ tale of Sancho Panza, who loses his donkey in one chapter but a few chapters later, thanks to the forgetfulness of the author, is riding the dear little animal again, our story has contradictions.

Erwin Schrödinger (1953)

Abstract

By moving away from the traditional reductionist reading of the quantum theory of atoms in molecules (QTAIM), in this paper we analyze the role played by QTAIM in the relationship between molecular chemistry and quantum mechanics from an emergentist perspective. In particular, we show that such a relationship involves two steps: an intra-domain emergence and an inter-domain emergence. Intra-domain emergence, internal to quantum mechanics, results from the fact that the electron density, from which all the other QTAIM’s concepts are defined, arises from the wavefunction as a coarse-grained magnitude. Inter-domain emergence involves an analogical link, a map**, between QTAIM’s entities, such as topological atoms and bond paths, and the entities that populate the molecular-chemistry domain, such as chemical atoms and chemical bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The wavefunction can be complex in case of the presence of an external magnetic field, for example.

References

  • Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  Google Scholar 

  • Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73, 2871–2883 (1980)

    Article  Google Scholar 

  • Bader, R.F.W.: Atoms in Molecules. A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991)

    Article  Google Scholar 

  • Bader, R.F.W.: Principle of stationary action and the definition of a proper open system. Phys. Rev. B 49, 13348–13356 (1994)

    Article  Google Scholar 

  • Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998)

    Article  Google Scholar 

  • Bader, R.F.W.: Letter to the editor: quantum mechanics, or orbitals? Int. J. Quantum Chem. 94, 173–177 (2003)

    Article  Google Scholar 

  • Bader, R.F.W.: Bond paths are not chemical bonds. J. Phys. Chem. A 113, 10391–10396 (2009)

    Article  Google Scholar 

  • Bader, R.F.W.: On the non-existence of parallel universes in chemistry. Found. Chem. 13, 11–37 (2011)

    Article  Google Scholar 

  • Bader, R.F.W., Becker, P.: Transferability of atomic properties and the theorem of Hohenberg and Kohn. Chem. Phys. Lett. 148, 452–458 (1988)

    Article  Google Scholar 

  • Bader, R.F.W., Beddall, P.M.: The spatial partitioning and transferability of molecular energies. Chem. Phys. Lett. 8, 29–36 (1971)

    Article  Google Scholar 

  • Bader, R.F.W., Beddall, P.M.: Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 56, 3320–3329 (1972)

    Article  Google Scholar 

  • Bader, R.F.W., Matta, C.F.: Atomic charges are measurable quantum expectation values: a rebuttal of criticisms of QTAIM charges. J. Phys. Chem. A 108, 8385–8394 (2004)

    Article  Google Scholar 

  • Bader, R.F.W., Matta, C.F.: Atoms in molecules as non-overlap**, bounded, space-filling open quantum systems. Found. Chem. 15, 253–276 (2013)

    Article  Google Scholar 

  • Bader, R.F.W., Nguyen-Dang, T.T.: Quantum theory of atoms in molecules—Dalton revisited. Adv. Quantum Chem. 14, 63–124 (1981)

    Article  Google Scholar 

  • Bader, R.F.W., Zou, P.F.: An atomic population as the expectation value of a quantum observable. Chem. Phys. Lett. 191, 54–58 (1992)

    Article  Google Scholar 

  • Bader, R.F.W., Beddall, P.M., Peslak Jr., J.: Theoretical development of a virial relationship for spatially defined fragments of molecular systems. J. Chem. Phys. 58, 557–566 (1973)

    Article  Google Scholar 

  • Bader, R.F.W., Runtz, G.R., Messer, R. R.: The virial partitioning method. In: Chemical and Biochemical Reactivity; The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. VI, pp. 99–111 (1974)

  • Bader, R.F.W., Anderson, S.G., Duke, A.J.: Quantum topology of molecular charge distributions. 1. J. Am. Chem. Soc. 101, 1389–1395 (1979)

    Article  Google Scholar 

  • Bader, R.F.W., Tal, Y., Anderson, S.G., Nguyen-Dang, T.T.: Quantum topology: theory of molecular structure and its change. Isr. J. Chem. 19, 8–29 (1980)

    Article  Google Scholar 

  • Bader, R.F.W., Popelier, P.L.A., Keith, T.A.: Theoretical definition of a functional group and the molecular orbital paradigm. Angew. Chem. Int. Ed. 33, 620–631 (1994)

    Article  Google Scholar 

  • Batterman, R.: The Devil in the Details. Oxford University Press, Oxford (2002)

    Google Scholar 

  • Butterfield, J.: Less is different: emergence and reduction reconciled. Found. Phys. 41, 1065–1135 (2011a)

    Article  Google Scholar 

  • Butterfield, J.: Emergence, reduction and supervenience: a varied landscape. Found. Phys. 41, 920–959 (2011b)

    Article  Google Scholar 

  • Cafiero, M., Adamowicz, L.: Molecular structure in non-Born–Oppenhiemer quantum mechanics. Chem. Phys. Lett. 387, 136–141 (2004)

    Article  Google Scholar 

  • Cafiero, M., Adamowicz, L.: Non-Born–Oppenhiemer calculations of the ground state of H3. Int. J. Quantum Chem. 107, 2679–2686 (2007)

    Article  Google Scholar 

  • Cafiero, M., Bubin, S., Adamowicz, L.: Non-Born–Oppenhiemer calculations of atoms and molecules. Phys. Chem. Chem. Phys. 5, 1491–1501 (2003)

    Article  Google Scholar 

  • Campbell, D.T.: Downward causation in hierarchically organised biological systems. In: Ayala, F.J., Dobzhansky, T. (eds.) Studies in the Philosophy of Biology: Reduction and Related Problems, pp. 179–186. Macmillan, London (1974)

    Chapter  Google Scholar 

  • Cao, W.L., Gatti, C., MacDougall, P.J., Bader, R.F.W.: On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters. Chem. Phys. Lett. 141, 380–385 (1987)

    Article  Google Scholar 

  • Castillo, N., Matta, C.F., Boyd, R.J.: The first example of a cage critical point in a single ring: a novel twisted helical topology. Chem. Phys. Lett. 409, 265–269 (2005)

    Article  Google Scholar 

  • Causá, M., Savin, A., Silvi, B.: Atoms and bonds in molecules and chemical explanations. Found. Chem. 16, 3–26 (2014)

    Article  Google Scholar 

  • Clinton, W.L., Massa, L.J.: Determination of the electron density matrix from X-ray diffraction data. Phys. Rev. Lett. 29, 1363–1366 (1972)

    Article  Google Scholar 

  • Clinton, W.L., Galli, A.J., Massa, L.J.: Direct determination of pure-state density matrices. II. Construction of constrained idempotent one-body densities. Phys. Rev. 177, 7–12 (1969)

    Article  Google Scholar 

  • Clinton, W.L., Frishberg, C.A., Massa, L.J., Oldfield, P.A.: Methods for obtaining an electron-density matrix from X-ray data. Int. J. Quantum Chem. 7, 505–514 (1973)

    Article  Google Scholar 

  • Coppens, P.: Electron density from X-ray diffraction. Annu. Rev. Phys. Chem. 43, 663–692 (1992)

    Article  Google Scholar 

  • Coppens, P.: X-ray Charge Densities and Chemical Bonding. Oxford University Press, New York (1997)

    Google Scholar 

  • Cunningham, B.: The reemergence of ‘emergence’. Philos. Sci. 68, S62–S75 (2001)

    Article  Google Scholar 

  • Darden, L., Maull, N.: Interfield theories. Philos. Sci. 44, 43–64 (1977)

    Article  Google Scholar 

  • Davidson, D.: Mental events. In: Foster, L., Swanson, J.W. (eds.) Experience and Theory, pp. 79–101. The University of Massachusetts Press, Amherst, MA (1970)

    Google Scholar 

  • de Vries, R.Y., Briels, W.J., Feil, D., te Velde, G., Baerends, E.J.: Charge density study with maximum entropy method on model data of silicon. A search for non-nuclear attractors. Can. J. Chem. 74, 1054–1058 (1996)

    Article  Google Scholar 

  • Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Oxford University Press, Oxford (1958)

    Google Scholar 

  • Dizadji-Bahmani, F., Frigg, R., Hartmann, S.: Who is afraid of Nagelian reduction? Erkenntnis 73, 393–412 (2010)

    Article  Google Scholar 

  • Eberhart, M., Jones, T.: The two faces of chemistry: can they be reconciled? Found. Chem. 15, 277–285 (2013)

    Article  Google Scholar 

  • Fortin, S., Lombardi, O.: Partial traces in decoherence and in interpretation: what do reduced states refer to? Found. Phys. 44, 426–446 (2014)

    Article  Google Scholar 

  • Fortin, S., Lombardi, O.: Understanding decoherence as an irreversible process. Int. J. Quantum Found. 4, 247–267 (2018)

    Google Scholar 

  • Gaudoin, R., Burke, K.: Lack of Hohenberg–Kohn theorem for excited states. Phys. Rev. Lett. 93, 1–4 (2004)

    Article  Google Scholar 

  • Gavroglu, K., Simões, A.: Neither Physics nor Chemistry: A History of Quantum Chemistry. MIT Press, Cambridge, MA (2012)

    Google Scholar 

  • Gavroglu, K., Simões, A.: Philosophical issues in (sub)disciplinary contexts: the case of quantum chemistry. In: Scerri, E., Fisher, G. (eds.) Essays in the Philosophy of Chemistry, pp. 60–82. Oxford University Press, Oxford (2015)

    Google Scholar 

  • Genoni, A., Bucinskż, L., Claiser, N., Contreras-Garcia, J., Dittrich, B., Dominiak, P.M., Espinosa, E., Gatti, C., Giannozzi, P., Gillet, J.-M., Jayatilaka, D., Macchi, P., Madsen, A.Ų., Massa, L., Matta, C.F., Merz Jr., K.M., Nakashima, P., Ott, H., Ryde, U., Scherer, W., Schwarz, K., Sierka, M., Grabowsky, S.: Quantum crystallography: current developments and future perspectives. Chem. Eur. J. 24, 10881–10905 (2018)

    Article  Google Scholar 

  • Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Yale University Press, New Haven (1902)

    Google Scholar 

  • Goli, M., Shahbazian, S.: Atoms in molecules: beyond Born–Oppenheimer paradigm. Theor. Chem. Acc. 129, 235–245 (2011)

    Article  Google Scholar 

  • Grabowsky, S., Genoni, A., Bürgi, H.-B.: Quantum crystallography. Chem. Sci. 8, 4159–4176 (2017)

    Article  Google Scholar 

  • Grunenberg, J.: Ill-defined chemical concepts: the problem of quantification. Int. J. Quantum Chem. 117, 1–11 (2017)

    Article  Google Scholar 

  • Hendry, R.F.: The physicists, the chemists, and the pragmatics of explanation. Philos. Sci. 71, 1048–1059 (2004)

    Article  Google Scholar 

  • Hendry, R.F.: Ontological reduction and molecular structure. Stud. Hist. Philos. Mod. Phys. 41, 183–191 (2010)

    Article  Google Scholar 

  • Hettema, H.: Reducing Chemistry to Physics. Limits, Models, Consequences. Rijksuniversiteit Groningen, Groningen (2012)

    Google Scholar 

  • Hettema, H.: Austere quantum mechanics as a reductive basis for chemistry. Found. Chem. 15, 311–326 (2013a)

    Article  Google Scholar 

  • Hettema, H.: QTAIM as a research programme: a reply to Shahbazian. Found. Chem. 15, 335–341 (2013b)

    Article  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)

    Article  Google Scholar 

  • Huang, L., Massa, L., Karle, J.: Quantum crystallography. J. Mol. Struct. 474, 9–12 (1999)

    Article  Google Scholar 

  • Huang, L., Massa, L., Karle, J.: Quantum crystallography, a develo** area of computational chemistry extending to macromolecules. IBM J. Res. Dev. 45, 409–415 (2001)

    Article  Google Scholar 

  • Huang, L., Massa, L., Karle, J.: Quantum kernels and quantum crystallography: applications in biochemistry. In: Matta, C.F. (ed.) Quantum Biochemistry: Electronic Structure and Biological Activity. Wiley, Weinheim (2010). (Chap. 1)

    Google Scholar 

  • Humphreys, P.: Synchronic and diachronic emergence. Mind Mach. 18, 431–442 (2008)

    Article  Google Scholar 

  • Iversen, B.B., Larsen, F.K., Souhassou, M., Takata, M.: Experimental evidence for the existence of non-nuclear maxima in the electron-density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method. Acta Crystallogr. B 51, 580–591 (1995)

    Article  Google Scholar 

  • Jayatilaka, D.: Wavefunction for beryllium from X-ray diffraction data. Phys. Rev. Lett. 80, 798–801 (1998)

    Article  Google Scholar 

  • Jayatilaka, D., Grimwood, D.J.: Wavefunctions derived from experiment. I. Motivation and theory. Acta Crystallogr. A 57, 76–86 (2001a)

    Article  Google Scholar 

  • Jayatilaka, D., Grimwood, D.J.: Wavefunctions derived from experiment. II. A wavefunction for oxalic acid dehydrate. Acta Crystallogr. A 57, 87–100 (2001b)

    Article  Google Scholar 

  • Kim, J.: Making sense of emergence. Philos. Stud. 95, 3–36 (1999)

    Article  Google Scholar 

  • Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley, New York (2001)

    Book  Google Scholar 

  • Koritsanszky, T.S., Coppens, P.: Chemical applications of X-ray charge-density analysis. Chem. Rev. 101, 1583–1628 (2001)

    Article  Google Scholar 

  • Labarca, M., Lombardi, O.: Why orbitals do not exist? Found. Chem. 12, 149–157 (2010)

    Article  Google Scholar 

  • Llored, J.-P.: Emergence and quantum chemistry. Found. Chem. 14, 245–274 (2012)

    Article  Google Scholar 

  • Lombardi, O., Ferreira Ruiz, M.J.: Distinguishing between inter-domain and intra-domain emergence. Found. Sci. 24, 133–151 (2019)

    Article  Google Scholar 

  • Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61, 981–1015 (1989)

    Article  Google Scholar 

  • Madách, I.: “Az Ember Tragédiįja (The Tragedy of Man (1861)” English Translation by George Szirtes, 3rd edn. Corvina, Budapest (1998)

    Google Scholar 

  • Manafu, A.: Emergence and reduction in science. A case study. Ph.D. thesis, School of Graduate and Postdoctoral Studies, University of Western Ontario (2011)

  • Martínez González, J.C., Fortin, S., Lombardi, O.: Why molecular structure cannot be strictly reduced to quantum mechanics. Found. Chem. 21, 31–45 (2019)

    Article  Google Scholar 

  • Martín-Pendás, Á., Blanco, M.A., Costales, A., Mori-Sánchez, P., Luaña, V.: Non-nuclear maxima of the electron density. Phys. Rev. Lett. 83, 1930–1933 (1999)

    Article  Google Scholar 

  • Massa, L., Matta, C.F.: Exploiting the full quantum crystallography. Can. J. Chem. 96, 599–605 (2018)

    Article  Google Scholar 

  • Massa, L., Huang, L., Karle, J.: Quantum crystallography and the use of kernel projector matrices. Int. J. Quantum Chem. Quantum Chem. Symp. 29, 371–384 (1995)

    Article  Google Scholar 

  • Matta, C.F.: Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J. Comput. Chem. 35, 1165–1198 (2014)

    Article  Google Scholar 

  • Matta, C.F.: On the connections between the quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT): a letter from Richard F. W. Bader to Lou Massa. Struct. Chem. 28, 1591–1597 (2017)

    Article  Google Scholar 

  • Matta, C.F., Arabi, A.A.: Electron-density descriptors as predictors in quantitative structure activity/property relationships and drug design. Future Med. Chem. 3, 969–994 (2011)

    Article  Google Scholar 

  • Matta, C.F., Bader, R.F.W.: An experimentalist’s reply to «What is an atom in a molecule?». J. Phys. Chem. A 110, 6365–6371 (2006)

    Article  Google Scholar 

  • Matta, C.F., Boyd, R.J.: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley, Weinheim (2007)

    Book  Google Scholar 

  • McLaughlin, B.: The rise and fall of British emergentism. In: Beckermann, A., Flohr, H., Kim, J. (eds.) Emergence or Reduction? Essays on the Prospects of Nonreductive Physicalism, pp. 49–93. Walter de Gruyter, Berlin (1992)

    Google Scholar 

  • McLaughlin, B.: Emergence and supervenience. Intellectica 2, 25–43 (1997)

    Google Scholar 

  • McLaughlin, B., Bennett, K.: Supervenience. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2018 edn. (2018). https://plato.stanford.edu/archives/spr2018/entries/supervenience/. Accessed June 2019

  • Mezey, P.G.: The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96, 169–178 (1999)

    Article  Google Scholar 

  • Mulder, P.: Are orbitals observable. Hyle 17, 24–35 (2011)

    Google Scholar 

  • Nagel, E.: The Structure of Science: Problems in the Logic of Scientific Explanation. Harcourt, Brace & World, New York (1961)

    Book  Google Scholar 

  • Nakai, H.: Nuclear orbital plus molecular orbital theory: simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation. Int. J. Quantum Chem. 107, 2849–2869 (2007)

    Article  Google Scholar 

  • Nasertayoob, P., Shahbazian, S.: Revisiting the foundations of the quantum theory of atoms in molecules: toward a rigorous definition of topological atoms. Int. J. Quantum Chem. 109, 726–732 (2009)

    Article  Google Scholar 

  • Nickles, T.: Two concepts of intertheoretic reduction. J. Philos. 70, 181–201 (1973)

    Article  Google Scholar 

  • O’Connor, T., Wong, H.Y.: Emergent properties. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Summer 2015 edn. (2015). http://plato.stanford.edu/archives/sum2015/entries/properties-emergent/. Accessed June 2019

  • Ogilvie, J.F.: Is a molecular orbital measurable by means of tomographic imaging? Found. Chem. 13, 87–91 (2011)

    Article  Google Scholar 

  • Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  • Parr, R.G., Ayers, P.W., Nalewajski, R.: What is an atom in a molecule? J. Phys. Chem. A 109, 3957–3959 (2005)

    Article  Google Scholar 

  • Popelier, P.L.A.: Atoms in Molecules: An Introduction. Prentice Hall, London (2000)

    Book  Google Scholar 

  • Poston, T., Stewart, I.: Catastrophe Theory and its Applications. Dover Publications Inc, Mineola (1978)

    Google Scholar 

  • Primas, H.: Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin (1983)

    Book  Google Scholar 

  • Putnam, H.: Philosophy and our mental life. In: Putnam, H. (ed.) Mind, Language, and Reality: Philosophical Papers, pp. 291–303. Cambridge University Press, Cambridge (1975)

    Chapter  Google Scholar 

  • Riess, I., Münch, W.: The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theor. Chim. Acta 58, 295–300 (1981)

    Article  Google Scholar 

  • Rueger, A.: Physical emergence, diachronic and synchronic. Synthese 124, 297–322 (2000)

    Article  Google Scholar 

  • Runtz, G.R., Bader, R.F.W., Messer, R.R.: Definition of bond paths and bond directions in terms of the molecular charge distribution. Can. J. Chem. 55, 3040–3045 (1977)

    Article  Google Scholar 

  • Sarkar, S.: Nagel on reduction. Stud. Hist. Philos. Sci. 53, 43–56 (2015)

    Article  Google Scholar 

  • Scerri, E.: Have orbitals really been observed? J. Chem. Educ. 77, 1492–1494 (2000)

    Article  Google Scholar 

  • Scerri, E.: The recently claimed observation of atomic orbitals and some related philosophical issues. Philos. Sci. 68, S76–S88 (2001)

    Article  Google Scholar 

  • Schaffner, K.F.: Reduction: the Cheshire cat problem and a return to roots. Synthese 151, 377–402 (2006)

    Article  Google Scholar 

  • Scholl, D.S., Steckel, J.A.: Density Functional Theory: A Practical Introduction. Wiley, Hoboken, NJ (2009)

    Book  Google Scholar 

  • Schröder, J.: Emergence: non-deducibility or downwards causation? Philos. Q. 48, 433–452 (1998)

    Article  Google Scholar 

  • Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926a)

    Article  Google Scholar 

  • Schrödinger, E.: Quatisierung als Eigenwertproblem (Vierte mitteilung). Ann. Phys. 81, 437–490. English Translation, in: E. Schrödinger, Collected Papers on Wave Mechanics 1928. Blackie & Son Limited, London (1926b)

  • Schrödinger, E.: What is matter? Sci. Am. 189, 52–57 (1953)

    Article  Google Scholar 

  • Shahbazian, S.: Letter to editor: the mathematical soundness and the physical content of the subsystem variational procedure of the QTAIM. Int. J. Quantum Chem. 111, 4497–4500 (2011)

    Article  Google Scholar 

  • Shahbazian, S.: Beyond the orthodox QTAIM: motivations, current status, prospects and challenges. Found. Chem. 15, 287–302 (2013a)

    Article  Google Scholar 

  • Shahbazian, S.: Comment on “Austere quantum mechanics as a reductive basis for chemistry”. Found. Chem. 15, 327–334 (2013b)

    Article  Google Scholar 

  • Shahbazian, S.: Letter to the editor: are there ‘really’ atoms in molecules? Found. Chem. 16, 77–84 (2014)

    Article  Google Scholar 

  • Sklar, L.: Physics and Chance. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  • Srebrenik, S., Bader, R.F.W.: Towards the development of the quantum mechanics of a subspace. J. Chem. Phys. 63, 3945–3961 (1975)

    Article  Google Scholar 

  • Srebrenik, S., Bader, R., Nguyen-Dang, T.T.: Subspace quantum mechanics and the variational principle. J. Chem. Phys. 68, 3667–3679 (1978)

    Article  Google Scholar 

  • Sukumar, N.: The atom in a molecule as a mereological construct in chemistry. Found. Chem. 15, 303–309 (2013a)

    Article  Google Scholar 

  • Sukumar, N.: A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Material Sciences. Wiley, Hoboken, NJ (2013b)

    Google Scholar 

  • Taylor, A., Matta, C.F., Boyd, R.J.: The hydrated electron as a pseudo-atom in cavity-bound water clusters. J. Chem. Theory Comput. 3, 1054–1063 (2007)

    Article  Google Scholar 

  • Terrabuio, L.A., Teodoro, T.Q., Matta, C.F., Haiduke, R.L.A.: An investigation of non-nuclear attractors in heteronuclear diatomic systems. J. Phys. Chem. A 120, 1168–1174 (2016)

    Article  Google Scholar 

  • Thom, R.: Structural Stability and Morphogenesis: An Outline of a General Theory of Models (English Translation). Addison-Wesley, Boston, MA (1972)

    Google Scholar 

  • Tsirelson, V.: Early days of quantum crystallography: a personal account. J. Comput. Chem. 39, 1029–1037 (2018)

    Article  Google Scholar 

  • Tsirelson, V.G., Ozerov, R.P.: Electron Density and Bonding in Crystals: Principles, Theory and X-ray Diffraction Experiments in Solid State Physics and Chemistry. Institute of Physics Publishing, New York (1996)

    Google Scholar 

  • Tsirelson, V., Stash, A.: On functions and quantities derived from the experimental electron density. Acta Crystallogr. A 60, 418–426 (2004)

    Article  Google Scholar 

  • Uffink, J.: Compendium of the foundations of classical statistical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, pp. 923–1074. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  • Wimsatt, W. C.: Reductive explanation: a functional account. In: Cohen, R.S., Hooker, C.A., Michalos, A.C. (eds.) PSA 1974: Proceedings of the 1974 meeting of the Philosophy of Science Association. Reidel, Dordrecht, pp. 671–710 (1976)

  • Wang, S., Schwarz, W.H.E.: On closed-shell interactions, polar covalences, d shell holes, and direct images of orbitals: The case of cuprite. Angew. Chem. Int. Ed. 39, 1757–1761 (2000)

    Article  Google Scholar 

  • Wolpert, L., Richards, A.: Passionate Minds. The Inner World of Scientists. Oxford University Press, Oxford (1997)

    Google Scholar 

  • Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978)

    Article  Google Scholar 

  • Woolley, R.G.: Natural optical activity and the molecular hypothesis. Struct. Bond. 52, 1–35 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Lou Massa (Hunter College) for several enlightening discussions. C.F.M. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and Mount Saint Vincent University for funding. This study was also supported by Agencia Nacional de Promoción Científica y Tecnológica (Grant No. PICT-2018- 04519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matta, C.F., Lombardi, O. & Jaimes Arriaga, J. Two-step emergence: the quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry. Found Chem 22, 107–129 (2020). https://doi.org/10.1007/s10698-020-09352-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-020-09352-w

Keywords

Navigation