Log in

A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we applied machine learning techniques to analyze the default probability in financial institutions using a large dataset of variables collected from 2325 banks over 17 years, extracting the most relevant variables using a feature selection method, predicting default and systemic risk, and finally investigating the contributions of each relevant feature to the overall financial stress of banking institutions using explainable artificial intelligence techniques. We found that the most important variables for the default risk prediction include the bailout probability, the market share in terms of assets, and the market-to-book ratio, highlighting the relevance of issues like moral hazard and market leverage. On the other hand, for systemic risk prediction, the number of banks in the country and interest rates level are among the most relevant features, indicating that markets with more competition fare better against systemic risks. The findings of this research provide an empirical assessment of the main factors that explain the presence of financial stress in banking institutions, conciliating the versatility of machine learning models with practical interpretability and causal inference, being of potential interest to researchers in quantitative finance and market practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Tabak et al. (2012) and Hasan and Marton (2003) use non-financial spending as proxy for personnel expenses, due to the restriction on obtaining this variable.

References

  • Acharya, V. V. (2009). A theory of systemic risk and design of prudential bank regulation. Journal of Financial Stability, 5(3), 224–255. https://doi.org/10.1016/j.jfs.2009.02.001

    Article  Google Scholar 

  • Affes, Z., & Hentati-Kaffel, R. (2019). Predicting US Banks bankruptcy: Logit versus canonical discriminant analysis. Computational Economics, 54(1), 199–244. https://doi.org/10.1007/s10614-017-9698-0

    Article  Google Scholar 

  • Akins, B., Li, L., Ng, J., & Rusticus, T. O. (2016). Bank competition and financial stability: Evidence from the financial crisis. Journal of Financial and Quantitative Analysis, 51(1), 1–28. https://doi.org/10.1017/S0022109016000090

    Article  Google Scholar 

  • Albuquerque, P. H. M., Peng, Y., & Silva, J. PFd. (2022). Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting. Journal of Forecasting, 41(8), 1701–1724.

    Article  Google Scholar 

  • Amidu, M., & Wolfe, S. (2013). Does bank competition and diversification lead to greater stability? Evidence from emerging markets. Review of Development Finance, 3(3), 152–166. https://doi.org/10.1016/j.rdf.2013.08.002

    Article  Google Scholar 

  • Anginer, D., Demirguc-Kunt, A., & Zhu, M. (2014). How does competition affect bank systemic risk? Journal of Financial Intermediation, 23(1), 1–26. https://doi.org/10.1016/j.jfi.2013.11.001

    Article  Google Scholar 

  • Beck, T., De Jonghe, O., & Schepens, G. (2013). Bank competition and stability: Cross-country heterogeneity. Journal of Financial Intermediation. https://doi.org/10.1016/j.jfi.2012.07.001

    Article  Google Scholar 

  • Beutel, J., List, S., & von Schweinitz, G. (2019). Does machine learning help us predict banking crises? Journal of Financial Stability, 45(100), 693.

    Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637–654.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L. (2002). Manual on setting up, using, and understanding random forests v3. 1. Statistics Department University of California Berkeley, CA, USA (Vol. 1(58) pp. 3–42).

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Routledge.

    Book  Google Scholar 

  • Burns, K., & Moosa, I. A. (2015). Enhancing the forecasting power of exchange rate models by introducing nonlinearity: Does it work? Economic Modelling, 50, 27–39. https://doi.org/10.1016/j.econmod.2015.06.003

    Article  Google Scholar 

  • Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk management. Computational Economics, 57(1), 203–216.

    Article  Google Scholar 

  • Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the us banking sector: An extreme gradient boosting approach. International Review of Economics and Finance, 61, 304–323.

    Article  Google Scholar 

  • Carmona, P., Dwekat, A., & Mardawi, Z. (2022). No more black boxes! Explaining the predictions of a machine learning xgboost classifier algorithm in business failure. Research in International Business and Finance, 61(101), 649.

    Google Scholar 

  • Carvalho, D., Ferreira, M. A., & Matos, P. (2015). Lending relationships and the effect of bank distress: Evidence from the 2007–2009 financial crisis. Journal of Financial and Quantitative Analysis, 50(6), 1165–1197.

    Article  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, association for computing machinery, New York, NY, USA, KDD ’16 (pp. 785-794). https://doi.org/10.1145/2939672.2939785

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Article  Google Scholar 

  • Croxson, K., Bracke, P., & Jung, C. (2019). Explaining why the computer says ‘no’. FCA, 5, 31.

    Google Scholar 

  • Dahiya, S., Saunders, A., & Srinivasan, A. (2003). Financial distress and bank lending relationships. The Journal of Finance, 58(1), 375–399.

    Article  Google Scholar 

  • Ekinci, A., & Erdal, H. I. (2017). Forecasting bank failure: Base learners, ensembles and hybrid ensembles. Computational Economics, 49(4), 677–686.

    Article  Google Scholar 

  • Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47(2), 427–465.

    Google Scholar 

  • Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010

    Article  Google Scholar 

  • Feng, G., Polson, N.G., & Xu, J. (2018). Deep learning in characteristics-sorted factor models. ar**v preprint ar**v:1805.01104

  • Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research, 20(177), 1–81.

    Google Scholar 

  • Fu, X. M., Lin, Y. R., & Molyneux, P. (2014). Bank competition and financial stability in Asia Pacific. Journal of Banking and Finance, 38, 64–77. https://doi.org/10.1016/j.jbankfin.2013.09.012

    Article  Google Scholar 

  • Gan, L., Wang, H., & Yang, Z. (2020). Machine learning solutions to challenges in finance: An application to the pricing of financial products. Technological Forecasting and Social Change, 153(119), 928.

    Google Scholar 

  • Genuer, R., & Poggi, J. M. (2020). Random forests. In Random forests with R (pp. 33–55). Springer.

  • Géron, A. (2019). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow (2nd ed.). O’Reilly Media.

    Google Scholar 

  • Gropp, R., Hakenes, H., & Schnabel, I. (2011). Competition, risk-shifting, and public bail-out policies. Review of Financial Studies, 24(6), 2084–2120. https://doi.org/10.1093/rfs/hhq114

    Article  Google Scholar 

  • Gruszczyński, M. (2020). Modeling financial distress and bankruptcy. In Financial Microeconometrics (pp. 77–119). Springer.

  • Gu, S., Kelly, B., & **u, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.

    Article  Google Scholar 

  • Hasan, I., & Marton, K. (2003). Development and efficiency of the banking sector in a transitional economy: Hungarian experience. Journal of Banking and Finance, 27(12), 2249–2271. https://doi.org/10.1016/S0378-4266(02)00328-X

    Article  Google Scholar 

  • Hassani, H., Huang, X., & Silva, E. (2018). Digitalisation and big data mining in banking. Big Data and Cognitive Computing, 2(3), 18.

    Article  Google Scholar 

  • Höwer, D. (2016). The role of bank relationships when firms are financially distressed. Journal of Banking and Finance, 65, 59–75.

    Article  Google Scholar 

  • Hsu, M. W., Lessmann, S., Sung, M. C., Ma, T., & Johnson, J. E. (2016). Bridging the divide in financial market forecasting: Machine learners vs. financial economists. Expert Systems with Applications, 61, 215–234.

    Article  Google Scholar 

  • Iwanicz-Drozdowska, M., & Ptak-Chmielewska, A. (2019). Prediction of banks distress-regional differences and macroeconomic conditions. Acta Universitatis Lodziensis Folia Oeconomica, 6(345), 57–73.

    Article  Google Scholar 

  • Kozak, S., Nagel, S., & Santosh, S. (2020). Shrinking the cross-section. Journal of Financial Economics, 135(2), 271–292.

    Article  Google Scholar 

  • Kristóf, T., & Virág, M. (2022). Eu-27 bank failure prediction with c5. 0 decision trees and deep learning neural networks. Research in International Business and Finance, 61, 101–644.

    Article  Google Scholar 

  • Kumar, G., Rahman, M. R., Rajverma, A., & Misra, A. K. (2023). Predicting systemic risk of banks: A machine learning approach. Journal of Modelling in Management. https://doi.org/10.1108/JM2-12-2022-0288

    Article  Google Scholar 

  • Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29.

    Article  Google Scholar 

  • Lown, C. S., Osler, C. L., Strahan, P. E., & Sufi, A. (2000). The changing landscape of the financial services industry: What lies ahead? FRBNY Economic Policy Review, 10, 39–55.

    Google Scholar 

  • Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.

    Google Scholar 

  • Mama, H. B. (2017). Innovative efficiency and stock returns: Should we care about nonlinearity? Finance Research Letters, 24, 81–89.

    Article  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29, 449–70.

    Google Scholar 

  • Milne, A. (2014). Distance to default and the financial crisis. Journal of Financial Stability, 12, 26–36. https://doi.org/10.1016/j.jfs.2013.05.005

    Article  Google Scholar 

  • Müller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: A guide for data scientists. https://doi.org/10.1017/CBO9781107415324.004

  • Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix. Ecometrica, 55(3), 703–708. https://doi.org/10.2307/1913610

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    Google Scholar 

  • Peng, Y., & Nagata, M. H. (2020). An empirical overview of nonlinearity and overfitting in machine learning using Covid-19 data. Chaos, Solitons and Fractals, 139, 110055.

    Article  Google Scholar 

  • Petropoulos, A., Siakoulis, V., Stavroulakis, E., & Vlachogiannakis, N. E. (2020). Predicting bank insolvencies using machine learning techniques. International Journal of Forecasting, 36(3), 1092–1113.

    Article  Google Scholar 

  • Ribeiro, M.T., Singh, S., & Guestrin, C. (2016). “why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135–1144).

  • Schiozer, R., Mourad, F., & Vilarins, R. S. (2018). Bank risk, bank bailouts and sovereign capacity during a financial crisis: A cross-country analysis. Journal of Credit Risk. https://doi.org/10.21314/jcr.2018.246

    Article  Google Scholar 

  • Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307–317.

    Google Scholar 

  • Smith, M., & Alvarez, F. (2022). Predicting firm-level bankruptcy in the Spanish economy using extreme gradient boosting. Computational Economics, 59(1), 263–295. https://doi.org/10.1007/s10614-020-10078-2

    Article  Google Scholar 

  • Strumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory. The Journal of Machine Learning Research, 11, 1–18.

    Google Scholar 

  • Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and Information Systems, 41(3), 647–665.

    Article  Google Scholar 

  • Tabak, B. M., Fazio, D. M., & Cajueiro, D. O. (2012). The relationship between banking market competition and risk-taking: Do size and capitalization matter? Journal of Banking and Finance, 36(12), 3366–3381. https://doi.org/10.1016/j.jbankfin.2012.07.022

    Article  Google Scholar 

  • Tabak, B. M., Fazio, D. M., & Cajueiro, D. O. (2013). Systemically important banks and financial stability: The case of Latin America. Journal of Banking and Finance, 37, 3855–3866. https://doi.org/10.1016/j.jbankfin.2013.06.003

    Article  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B (Methodological), 58, 267–288.

    Article  Google Scholar 

  • Wang, C. W., Chiu, W. C., & Peña, J. I. (2017). Effect of rollover risk on default risk: Evidence from bank financing. International Review of Financial Analysis, 54, 130–143. https://doi.org/10.1016/j.irfa.2016.09.009

    Article  Google Scholar 

  • **aomao, X., Xudong, Z., & Yuanfang, W. (2019). A comparison of feature selection methodology for solving classification problems in finance. Journal of Physics: Conference Series, 1284, 012026.

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Gabriel de Moraes Souza.

Ethics declarations

Conflict of interest

The authors declare that they do not have a financial interest or personal relationships that could influence the work carried out in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes Souza, J.G., de Castro, D.T., Peng, Y. et al. A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions. Comput Econ (2023). https://doi.org/10.1007/s10614-023-10514-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10514-z

Keywords

Navigation