Log in

Effects of nanographene oxide on adipose-derived stem cell cryopreservation

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Cryoinjury mitigation is key in cell cryopreservation. Here, we aimed to assess the effectiveness of nanographene oxide (nano-GO) for improving cryoprotectant agents (CPAs) in human adipose stem cell (hADSC) cryopreservation. For in vitro experiments, nano-GO (5 μg/mL) was added to the CPAs in the control, and passage (P) 2 hADSCs were collected and cryopreserved for around two weeks. We compared cytotoxicity, cell viability, immunophenotypes, proliferation, cell apoptosis, and tri-lineage differentiation. In vivo, studies used lipoaspirate to create non-enriched or hADSC-enriched fat tissues by combining it with PBS or hADSCs cryopreserved with the aforementioned CPAs. Each nude mouse received a 0.3 mL subcutaneous injection of the graft. At 12 weeks, the grafts were harvested. Histology, adipocyte-associated genes and protein, vascular density and angiogenic cytokines, macrophage infiltration, and inflammatory cytokines were analyzed. Nano-GO CPA contributed to increased cell viability, improved cell recovery, and lowered levels of early apoptosis. Nano GO at concentrations of 0.01–100 μg/mL caused no cytotoxicity to hADSCs. The absence of nano GOs in the intracellular compartments of the cells was confirmed by transmission electron microscopy. The fat grafts from the CPA-GO group showed more viable adipocytes and significantly increased angiogenesis compared to the PBS and CPA-C groups. Adding hADSCs from the CPA-GO group to the graft reduced macrophage infiltration and MCP-1 expression. Nano-GO plays an anti-apoptotic role in the cryopreservation of hADSCs, which could improve the survival of transplanted fat tissues, possibly via improved angiogenesis and lower inflammatory response in the transplanted adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

ANOVA:

Analysis of variance

CAMS:

CAMS Initiative for Innovative Medicine

CPA:

Cryoprotectant agents

DMEM:

Dulbecco's Modified Eagle Medium

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

MSC:

Mesenchymal stem cell

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

TEM:

Transmission electron microscope

VEGF:

Vascular endothelial growth factor

References

  • Acker JP, McGann LE (2003) Protective effect of intracellular ice during freezing? Cryobiology 46(2):197–202

    Article  PubMed  Google Scholar 

  • Anchordoguy TJ et al (1991) Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 28(5):467–473

    Article  CAS  PubMed  Google Scholar 

  • Bahsoun S, Coopman K, Akam EC (2019) The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review. J Transl Med 17(1):397

    Article  PubMed  PubMed Central  Google Scholar 

  • Balapanuru J et al (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed Engl 49(37):6549–6553

    Article  CAS  PubMed  Google Scholar 

  • Bárcia RN et al (2017) Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing. Cytotherapy 19(3):360–370

    Article  PubMed  Google Scholar 

  • Bernabo N et al (2018) Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model. Carbon 129:428

    Article  CAS  Google Scholar 

  • Chen GY et al (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427

    Article  PubMed  Google Scholar 

  • Chinnadurai R et al (2014) Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Rep 3(1):60–72

    Article  CAS  Google Scholar 

  • Choi Y-J et al (2016) A novel biomolecule-mediated reduction of graphene oxide: a multifunctional anti-cancer agent. Molecules (basel, Switzerland) 21(3):375–375

    Article  PubMed  Google Scholar 

  • Chong Yu et al (2015) Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9(6):5713–5724

    Article  CAS  PubMed  Google Scholar 

  • Connor W, Ashwood-Smith MJ (1973) Cryoprotection of mammalian cells in tissue culture with polymers; possible mechanisms. Cryobiology 10(6):488–496

    Article  CAS  PubMed  Google Scholar 

  • Devireddy RV, Thirumala S, Gimble JM (2005) Cellular response of adipose derived passage-4 adult stem cells to freezing stress. J Biomech Eng 127(7):1081–1086

    Article  PubMed  Google Scholar 

  • Du Z et al (2020) Applications of graphene and its derivatives in bone repair: advantages for promoting bone formation and providing real-time detection, challenges and future prospects. Int J Nanomed 15:7523–7551

    Article  CAS  Google Scholar 

  • Duan G et al (2015) Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane. Nanoscale 7(37):15214–15224

    Article  CAS  PubMed  Google Scholar 

  • Duan G et al (2017) Graphene-induced pore formation on cell membranes. Sci Rep 7:42767–42767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durandt C et al (2019) The effect of early rounds of ex vivo expansion and cryopreservation on the adipogenic differentiation capacity of adipose-derived stromal/stem cells. Sci Rep 9(1):15943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eto H et al (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129(5):1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Farrant J (1969) Is there a common mechanism of protection of living cells by polyvinylpyrrolidone and glycerol ding freezing? Nature 222(5199):1175–1176

    Article  CAS  PubMed  Google Scholar 

  • Feng Z-Q et al (2018) Neurogenic differentiation of adipose derived stem cells on graphene-based mat. Mater Sci Eng C Mater Biol Appl 90:685–692

    Article  CAS  PubMed  Google Scholar 

  • François M et al (2012) Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 14(2):147–152

    Article  PubMed  Google Scholar 

  • Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Critser JK (2000) Mechanisms of cryoinjury in living cells. ILAR J 41(4):187–196

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alegria E et al (2016) Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep 6:25917–25917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg J et al (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103(7):074301

    Article  Google Scholar 

  • Geng H et al (2017) Size fractionation of graphene oxide nanosheets via controlled directional freezing. J Am Chem Soc 139(36):12517–12523

    Article  CAS  PubMed  Google Scholar 

  • Geng H et al (2017) Graphene oxide restricts growth and recrystallization of ice crystals. Angew Chem Int Ed Engl 56(4):997–1001

    Article  CAS  PubMed  Google Scholar 

  • Gu Z et al (2015) The role of basic residues in the adsorption of blood proteins onto the graphene surface. Sci Rep 5:10873–10873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guess AJ et al (2017) Safety profile of good manufacturing practice manufactured interferon gamma-primed mesenchymal stem/stromal cells for clinical trials. Stem Cells Transl Med 6(10):1868–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guven S, Demirci U (2012) Integrating nanoscale technologies with cryogenics: a step towards improved biopreservation. Nanomedicine (london) 7(12):1787–1789

    Article  CAS  Google Scholar 

  • Haack-Sorensen M et al (2007) The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy 9(4):328–337

    Article  CAS  PubMed  Google Scholar 

  • Hajmousa G et al (2017) The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells. Biomaterials 119:43–52

    Article  CAS  PubMed  Google Scholar 

  • Halim A et al (2018) A mini review focused on the recent applications of graphene oxide in stem cell growth and differentiation. Nanomaterials (basel, Switzerland) 8(9):736

    Article  PubMed  Google Scholar 

  • Han J et al (2018) Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12(2):1959–1977

    Article  CAS  PubMed  Google Scholar 

  • Harris WM et al (2019) Endothelial differentiated adipose-derived stem cells improvement of survival and neovascularization in fat transplantation. Aesthet Surg J 39(2):220–232

    Article  PubMed  Google Scholar 

  • Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • He Z, Liu K, Wang J (2018) Bioinspired materials for controlling ice nucleation, growth, and recrystallization. Acc Chem Res 51(5):1082–1091

    Article  CAS  PubMed  Google Scholar 

  • Heid H et al (2014) On the formation of lipid droplets in human adipocytes: the organization of the perilipin-vimentin cortex. PLoS ONE 9(2):e90386

    Article  PubMed  PubMed Central  Google Scholar 

  • Hezavehei M et al (2019) Preconditioning of sperm with sublethal nitrosative stress: a novel approach to improve frozen-thawed sperm function. Reprod Biomed Online 38(3):413–425

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro H, Rubinsky B (1994) Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31(5):483–500

    Article  CAS  PubMed  Google Scholar 

  • Kamat P et al (2020) Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy 22(8):400–411

    Article  CAS  PubMed  Google Scholar 

  • Karimi-Busheri F, Rasouli-Nia A, Weinfeld M (2016) Key issues related to cryopreservation and storage of stem cells and cancer stem cells: protecting biological integrity. Adv Exp Med Biol 951:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kern S et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells (dayton, Ohio) 24(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Khalil WA et al (2019) Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 126:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kim J et al (2013) Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J Biomed Mater Res A 101(12):3520–3530

    Article  PubMed  Google Scholar 

  • Kim WS, Park HS, Sung JH (2015) The pivotal role of PDGF and its receptor isoforms in adipose-derived stem cells. Histol Histopathol 30(7):793–799

    CAS  PubMed  Google Scholar 

  • Kim YW et al (2018) Insulin promotes adipose-derived stem cell differentiation after fat grafting. Plast Reconstr Surg 142(4):927–938

    Article  CAS  PubMed  Google Scholar 

  • Kølle S-F et al (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet (london, England) 382(9898):1113–1120

    Article  PubMed  Google Scholar 

  • Larionova I et al (2020) Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol 10:566511

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Li Z, Wang B (2002) Experimental viscosity measurements for copper oxide nanoparticle suspensions. Tsinghua Sci Technol 7(2):198–201

    CAS  Google Scholar 

  • Li R et al (2018) Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 12(2):1390–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2020) The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio. Cytotechnology 72:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Nijhawan D, Wang X (2004) Mitochondrial activation of apoptosis. 116(2 Suppl):S57–S61

  • Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19(11):3564

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C-F et al (2004) Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramideand etoposide-induced apoptosis. J Biol Chem 279(39):40755–40761

    Article  CAS  PubMed  Google Scholar 

  • Little JW 3rd, Munasifi T, McCulloch DT (1983) One-stage reconstruction of a projecting nipple: the quadrapod flap. Plast Reconstr Surg 71(1):126–133

    Article  PubMed  Google Scholar 

  • Liu X et al (2016) Quantification of intracellular ice formation and recrystallization during freeze-thaw cycles and their relationship with the viability of pig iliac endothelium cells. Biopreserv Biobank 14(6):511–519

    Article  CAS  PubMed  Google Scholar 

  • Lo Sicco C et al (2017) Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 6(3):1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loutfy SA et al (2017) Synthesis, characterization and cytotoxic evaluation of graphene oxide nanosheets: in vitro liver cancer model. Asian Pac J Cancer Prevent (APJCP) 18(4):955–961

    Google Scholar 

  • Lu F et al (2009) Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 124(5):1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Ma W et al (2018) Neural induction potential and MRI of ADSCs labeled cationic superparamagnetic iron oxide nanoparticle in vitro. Contrast Media Mol Imaging 2018:6268437

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden PW et al (1993) The effect of polyvinylpyrrolidone and the cooling rate during corneal cryopreservation. Cryobiology 30(2):135–157

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247(3 Pt 1):C125

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath JJ (1985) Preservation of biological material by freezing and thawing. Springer, New York

    Book  Google Scholar 

  • Miyazaki T, Suemori H (2016) Slow cooling cryopreservation optimized to human pluripotent stem cells. Adv Exp Med Biol 951:57–65

    Article  CAS  PubMed  Google Scholar 

  • Morris GJ (2006) Rapidly cooled human sperm: no evidence of intracellular ice formation. Human Reprod (oxford, England) 21(8):2075–2083

    Article  CAS  Google Scholar 

  • Morris TJ et al (2016) The effect of Me(2)SO overexposure during cryopreservation on HOS TE85 and hMSC viability, growth and quality. Cryobiology 73(3):367–375

    Article  CAS  PubMed  Google Scholar 

  • Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118(3 Suppl):121S-128S

    Article  CAS  PubMed  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  CAS  Google Scholar 

  • Park J et al (2014) Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthcare Mater 3(2):176–181

    Article  CAS  Google Scholar 

  • Park HJ et al (2018a) Adipose-derived stem cells ameliorate colitis by suppression of inflammasome formation and regulation of M1-macrophage population through prostaglandin E2. Biochem Biophys Res Commun 498(4):988–995

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2018b) Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Res Ther 9(1):293

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaik S et al (2018) Effects of decade long freezing storage on adipose derived stem cells functionality. Sci Rep 8(1):8162–8162

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng C et al (2018) Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxid Med Cell Longev 2018:1–12

    Google Scholar 

  • Sun X et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang LAL et al (2012) Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small 8(3):423–431

    Article  CAS  PubMed  Google Scholar 

  • Tang HH et al (2018a) Fate of free fat grafts with or without adipogenic adjuncts to enhance graft outcomes. Plast Reconstr Surg 142(4):939–950

    Article  CAS  PubMed  Google Scholar 

  • Tang Z et al (2018b) Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int J Nanomed 13:2907–2919

    Article  CAS  Google Scholar 

  • Tasso R et al (2013) In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Develop 22(24):3178–3191

    Article  CAS  Google Scholar 

  • Thirumala S et al (2007) Freezing and post-thaw apoptotic behavior of cells in the presence of palmitoyl nanogold particles. Nanotechnology 18(19):195104

    Article  Google Scholar 

  • Ulivi V et al (2014) Mesenchymal stem cell paracrine activity is modulated by platelet lysate: induction of an inflammatory response and secretion of factors maintaining macrophages in a proinflammatory phenotype. Stem Cells and Development 23(16):1858–1869

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2017) Evaluation of human platelet lysate and dimethyl sulfoxide as cryoprotectants for the cryopreservation of human adipose-derived stem cells. Biochem Biophys Res Commun 491(1):198

    Article  CAS  PubMed  Google Scholar 

  • Wei C et al (2017) Cellular behaviours of bone marrow-derived mesenchymal stem cells towards pristine graphene oxide nanosheets. Cell Prolif. https://doi.org/10.1111/cpr.12367

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch JL et al (2017) Effect of prolonged freezing of semen on exosome recovery and biologic activity. Sci Rep 7:45034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RJ (1983) The surface activity of PVP and other polymers and their antihemolytic capacity. Cryobiology 20(5):521–526

    Article  CAS  PubMed  Google Scholar 

  • Wong DE et al (2019) Adipose-derived stem cell extracellular vesicles: a systematic review. J Plast Reconstr Aesthet Surg 72(7):1207–1218

    Article  PubMed  Google Scholar 

  • Wu J et al (2015) Cytotoxicity effect of graphene oxide on human MDA-MB-231 cells. Toxicol Mech Methods 25(4):312–319

    Article  CAS  PubMed  Google Scholar 

  • Yong KW et al (2015) Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank 13(4):231

    Article  PubMed  Google Scholar 

  • Yong KW, Choi JR, Safwani WKZW (2016) Biobanking of human mesenchymal stem cells: future strategy to facilitate clinical applications. Adv Exp Med Biol 951:99–110

    Article  CAS  PubMed  Google Scholar 

  • Young SA, Flynn LE, Amsden BG (2018) Adipose-derived stem cells in a resilient in situ forming hydrogel modulate macrophage phenotype. Tissue Eng A 24(23–24):1784–1797

    Article  CAS  Google Scholar 

  • Yu W et al (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta 491(1–2):92–96

    Article  CAS  Google Scholar 

  • Yuan YI, Gao J, Lu F (2015) Effect of exogenous adipose-derived stem cells in the early stages following free fat transplantation. Exp Ther Med 10(3):1052–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Bingqian Xu, Wang X (2016) Cholesterol extraction from cell membrane by graphene nanosheets: a computational study. J Phys Chem B 120(5):957–964

    Article  CAS  PubMed  Google Scholar 

  • Zhao H et al (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and being in white adipose tissue. Diabetes 67(2):235–247

    Article  CAS  PubMed  Google Scholar 

  • Zheng H et al (2019) Fat extract improves fat graft survival via proangiogenic, anti-apoptotic, and pro-proliferative activities. Stem Cell Res Ther 10(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu M et al (2010) Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 64(2):222–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zixiang Chen, Shize Ma, Tong Liu, Yan Yang, Ya** Qu, Minqiang **n, and Chunjun Liu who provided support for this study.

Funding

This work was supported by the CAMS Initiative for Innovative Medicine (CAMS-I2M; 2017-I2M-3–006).

Author information

Authors and Affiliations

Authors

Contributions

Zifei Li: Conceptualization, Methodology, Formal analysis, Writing—original draft, Writing—review and editing, Project administration Author: Jun Qi: Conceptualization, Methodology, Software, Formal analysis, Writing—original draft, Writing—review and editing, Visualization, Project administration Author: Su Fu: Investigation, Resources, Data curation, Writing—original draft, Writing—review and editing, Supervision Author:Jie Luan (Co-corresponding author 1): Conceptualization, Supervision, Project administration, Funding acquisition Author:Qian Wang (Co-corresponding author 2): Conceptualization, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Jie Luan or Qian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qi, J., Fu, S. et al. Effects of nanographene oxide on adipose-derived stem cell cryopreservation. Cell Tissue Bank (2024). https://doi.org/10.1007/s10561-024-10140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10561-024-10140-5

Keywords

Navigation