Preservation of Biological Material by Freezing and Thawing

  • Chapter
Heat Transfer in Medicine and Biology
  • 517 Accesses

Abstract

Mankind is fascinated with the relationship between living systems and low temperature. This fascination has stimulated both scientific inquiry and literary license. As early as 1683, Robert Boyle found that fish and frogs could survive for short periods of time if a fraction of the body water remained unfrozen.(1) Looking to the possible future potential of cryopreservation, science fiction writers have envisioned the day when biological systems as complex as the human body will be preserved reversibly by freezing and storage at low temperatures. But what is the present state of affairs as we stand between early scientific observations on the one hand and the dreams of science fiction writers on the other?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyle, R., New Experiments and Observations Touching Cold (R. Davis, London, 1683 ).

    Google Scholar 

  2. Ashwood-Smith, M. J., Preservation of micro-organisms by freezing, freeze drying, and dessication, in Low-Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 219–252.

    Google Scholar 

  3. Meryman, H. T., Freeze drying, in Cryobiology, edited by H. T. Meryman ( Academic, New York, 1966 ), pp. 610–664.

    Google Scholar 

  4. Fry, R. M., Feezing and drying of bacteria, in Cryobiology, edited by H. T. Meryman ( Academic, New York, 1966 ), pp. 665–1966.

    Google Scholar 

  5. Greiff, D., and Rightsel, W., Freezing and freeze drying of viruses, in Cryobiology, edited by H. T. Meryman ( Academic, New York, 1966 ), pp. 698–728.

    Google Scholar 

  6. Morris, G. J., Plant cells, in Low-Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 253–283.

    Google Scholar 

  7. Fennema, O. R., Powrie, W. D., and Marth, E. H., Low-Temperature Preservation of Foods and Living Matter ( Dekker, New York, 1973 ).

    Google Scholar 

  8. Fahey, G. M. and Hirsch, A., Prospects for organ preservation by vitrification, in Organ Preservation: Basic and Applied Aspects, edited by D. E. Pegg, I. A. Jacobson, and N. A. Halasy ( M.T.P. Press, Lancaster, England, 1982 ), pp. 399–404.

    Google Scholar 

  9. Mazur, P., Physical and chemical basis of injury in single-celled micro-organisms subjected to freezing and thawing, in Cryobiology, edited by H. T. Meryman ( Academic, New York, 1966 ), pp. 213–315.

    Google Scholar 

  10. Thomas, D. G., and Staveley, L. A. M., Supercooling of drops of some molecular liquids, J. Chem. Soc. 1952, 4569–4577, 1952.

    Article  Google Scholar 

  11. Mazur, P., Cryobiology: the freezing of biological systems, Science 168, 939–949, 1970.

    Article  ADS  Google Scholar 

  12. Morris, G. J., and McGrath, J. J., Intracellular ice nucleation and gas bubble formation in spirogyra, Cryo-Letters 2, 341–352, 1981.

    Google Scholar 

  13. Mazur, P., The role of intracellular freezing in the death of cells cooled at supra-optimal rates, Cryobiology 14, 251–271, 1977.

    Article  Google Scholar 

  14. Denbigh, K., The Principles of Chemical Equilibrium, 3d ed. (Cambridge University Press, Cambridge, England, 1971 ).

    Google Scholar 

  15. Robinson, R. A., and Stokes, R. H., Electrolyte Solutions, 2d ed. rev. ( Butterworths, London, 1959 ).

    Google Scholar 

  16. Levin, R. L., Cravalho, E. G., and Huggins, C. E., Effect of hydration on the water content of human erythrocytes, Biophys. J. 16, 1411–1426, 1976.

    Article  ADS  Google Scholar 

  17. Mazur, P., Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing, J. Gen. Physiol. 47, 347–369, 1963.

    Article  Google Scholar 

  18. Silvares, O. M., Cravalho, E. G., Toscano, W. M., and Huggins, C. E., The thermodynamics of water transport for biological cells during freezing, Trans. ASME, J. Heat Transfer 98, 582–588, 1975.

    Article  Google Scholar 

  19. Diller, K. R., A simple computer model for cell freezing, Proc. 1977 Summer Computer Simulation Conf. ( Simulation Councils, La Jolla, CA, 1977 ), pp. 455–459.

    Google Scholar 

  20. Pushkar, N. S., Itkin, Y. A., Bronstein, V. L., Gordiyenko, E. A., and Kozmin, Y. V., On the problem of dehydration and intracellular crystallization during freezing of cell suspensions, Cryobiology 13, 147–152, 1976.

    Article  Google Scholar 

  21. Mansoori, G. A., Kinetics of water loss from cells at subzero centigrade temperatures, Cryobiology 12, 34–45, 1975.

    Article  Google Scholar 

  22. Lynch, M. E., and Diller, K. R., Analysis of the kinetics of cell freezing with cryophylactic additives, Trans. ASME, 81-WA/HT-53, 1981.

    Google Scholar 

  23. Meryman, H. T., Review of biological freezing, in Cryobiology, edited by H. T. Meryman ( Academic, New York, 1966 ), pp. 1–114.

    Google Scholar 

  24. Macklis, J. D., Kelterer, F. D., and Cravalho, E. G., Temperature dependence of the microwave properties of aqueous solutions of ethylene glycol between +15°C and —70°C, Cryobiology 16, 272–286, 1979.

    Article  Google Scholar 

  25. Kedem, O., and Katchaisky, A., Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes, Biochim. Biophys. Acta 27, 229–246, 1958.

    Article  Google Scholar 

  26. Lucke’, B. and McCutcheon, M., The living cell as an osmotic system and its permeability to water, Physiol. Rev. 12, 68–139, 1932.

    Google Scholar 

  27. Savitz, D., Sidel, V. W., and Solomon, A. K., Osmotic properties of human red cells, J. Gen. Physiol. 48, 79–94, 1964.

    Article  Google Scholar 

  28. Terwilliger, T. C., and Solomon, A. K., Osmotic water permeability of human red cells, J. Gen. Physiol. 77, 549–570, 1981.

    Article  Google Scholar 

  29. Levin, R. L., Water permeability of yeast cells at subzero temperatures, J. Mem. Biol. 46, 91–124, 1979.

    Article  Google Scholar 

  30. Dick, D. A. T., Osmotic properties of living cells, in International Review of Cytology, vol. 3, G. H. Bourne and J. F. Danielli, eds. (Academic, New York, 1959 ), pp. 388–433.

    Google Scholar 

  31. Nobel, P. S., The Boyle—Van’t Hoff relation, J. Theor. Biol. 23, 375–379, 1969.

    Article  Google Scholar 

  32. Meryman, H. T., Osmotic stress as a mechanism of freezing injury, Cryobiology 8, 489–400, 1971.

    Article  Google Scholar 

  33. Williams, R. J., Frost dessication: an osmotic model, in Analysis and Improvement of Plant and Cold Hardiness, edited by C. R. Olien and M. N. Smith ( CRC Press, Boca Raton, LA, 1981 ), pp. 89–115.

    Google Scholar 

  34. Castellan, G. W., Physical Chemistry, 2d ed. ( Addison-Wesley, Reading, PA, 1971 ).

    Google Scholar 

  35. Rand, R. P., and Burton, A. C., Mechanical properties of the red cell membrane, I. Membrane stiffness and intracellular pressure, Biophys. J. 4, 115–135, 1964.

    Article  ADS  Google Scholar 

  36. Leibo, S. P., Water permeability and its activation energy of fertilized and unfertilized mouse ova, J. Mem. Biol. 53, 179–188, 1980.

    Article  Google Scholar 

  37. Weist, S. C., and Steponkus, P. L., Freeze thaw injury to isolated spinach protoplasts and its simulation at above-freezing temperatures, Plant Physiol. 62, 699–705, 1978.

    Article  Google Scholar 

  38. Hempling, H. G., Permeability of the Ehrlich ascites tumor cell to water, J. Gen. Physiol. 44, 365–379, 1960.

    Article  Google Scholar 

  39. Farrant, J. and Ashwood-Smith, M. J., Practical aspects, in Low-Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 285–310.

    Google Scholar 

  40. Rowe, A. W., Lenny, L. L., and Mannoni, P., Cryopreservation of red cells and platelets, in Low-Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 85–120.

    Google Scholar 

  41. Whittingham, D. G., Principles of embryo preservation, in Low Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 65–83.

    Google Scholar 

  42. Cravalho, E. G., Huggins, C. E., Diller, K. R., and Watson, W. W., Blood freezing to nearly absolute zero temperature: —272.29°C, J. Biomech. Eng. 103, 24–26, 1981.

    Article  Google Scholar 

  43. Steponkus, P. L., Evans, R. Y., and Singh, J., Cryomicroscopy of isolated rye mesophyll cells, Cryo-Letters 3, 101–114, 1982.

    Google Scholar 

  44. Knox, J. M., Schwartz, G. S., and Diller, K. R., Volumetric changes in cells during freezing and thawing, J. Biomech. Eng. 102, 91–97, 1980.

    Article  Google Scholar 

  45. Farrant, J., General observations on cell preservation, in Low-Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 1–18.

    Google Scholar 

  46. Polge, C., Smith, A. U., and Parkes, A. S., Revival of spermatozoa after vitrification and dehydration at low temperatures, Nature 164, 666, 1949.

    Article  ADS  Google Scholar 

  47. Levin, R. L., Osmotic effects of introducing and removing cryoprotectants: perfused tissues and organs, in 1981 Advances in Bioengineering Trans. ASME, pp. 131–134, 1981.

    Google Scholar 

  48. Knight, S. C., Preservation of leukocytes, in Low Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 121–138.

    Google Scholar 

  49. Ashwood-Smith, M. J., Low temperature preservation of cells, tissues and organs, in Low Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 19–44.

    Google Scholar 

  50. Lovelock, J. E., The denaturation of lipid—protein complexes as a cause of damage by freezing, Proc. Roy. Soc. London Ser. B 147, 427–433, 1957.

    Article  ADS  Google Scholar 

  51. Lovelock, J. E., Physical instability of human red blood cells, Biochem. J. 60, 692–696, 1955.

    Google Scholar 

  52. Levitt, J., A sulfhydryl disulfide hypothesis of frost injury and resistance in plants, J. Theor. Biol. 3, 355–391, 1962.

    Article  Google Scholar 

  53. Heber, U. W., and Santarius, K. A., Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardness problems, Plant Physiol. 39, 712–719, 1964.

    Article  Google Scholar 

  54. Doebler, G. F., and Rinfret, A. P., The influence of protective compounds and cooling and warming conditions on hemolysis of erythrocytes by freezing and thawing, Biochim. Biophys. Acta. 58, 449–458, 1962.

    Article  Google Scholar 

  55. Meryman, H. T., Modified model for the mechanism of freezing injury in erythrocytes, Nature 218, 333–336, 1968.

    Article  ADS  Google Scholar 

  56. Mazur, P., Leibo, S. P., and Chu, E. H. Y., A two-factor hypothesis of freezing injury evidence from Chinese hamster tissue culture cells, Exp. Cell. Res. 71, 345–355, 1972.

    Article  Google Scholar 

  57. Morris, G. J., Liposomes as a model system for investigating freezing injury, in Effects of Low Temperatures on Biological Membranes, edited by G. J. Morris and A. Clarke ( Academic, London, 1981 ), pp. 241–262.

    Google Scholar 

  58. Williams, R. J., and Hope, H. J., The relationship between cell injury and osmotic volume reduction, III. Freezing injury and frost resistance in winter wheat, Cryobiology 18, 133–145, 1981.

    Article  Google Scholar 

  59. Williams, R. J., Willemot, C., and Hope, H. J., The relationship between cell injury and osmotic volume reduction, IV. The behavior of hardy wheat membrane lipids in monolayer, Cryobiology 18, 146–154, 1981.

    Article  Google Scholar 

  60. McGrath, J. J., Thermodynamic modelling of membrane damage, in Effects of Low Temperatures on Biological Membranes, edited by G. J. Morris and A. Clarke ( Academic, London, 1981 ), pp. 335–377.

    Google Scholar 

  61. Fujikawa, S., Freeze-fracture and etching studies on membrane damage on human erythrocytes caused by formation of intracellular ice, Cryobiology 17, 351–362, 1980.

    Article  Google Scholar 

  62. Smith, A, U., Prevention of haemolysis during freezing and thawing of red blood cells, Lancet 259, 910–911, 1950.

    Article  Google Scholar 

  63. Mollison, P. L., and Sloviter, H. A., Successful transfusion of previously frozen human red cells, Lancet 261, 862–864, 1951.

    Article  Google Scholar 

  64. Huggins, C. E., A general system for the preservation of blood by freezing, in Long-Term Preservation of Red Blood Cells, NASNRC Publ. 160–180, 1965.

    Google Scholar 

  65. Meryman, H. T., and Burton, J. L., Cryopreservation of platelets, in The Blood Platelet in Transfusion Therapy (Alan R. Liss, New York, 1978 ), pp. 153–165.

    Google Scholar 

  66. Polge, C., Freezing of spermatozoa, in Low Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 45–64.

    Google Scholar 

  67. Smith, A. U., In-vitro experiments with rabbit eggs, in Mammalian. Germ Cells ( Ciba Foundation Symposium, London, 1953 ), pp. 217–225.

    Google Scholar 

  68. Whittingham, D. C., Leibo, S. P., and Mazur, P., Survival of mouse embryos frozen to —196°C and —269°C, Science 178, 411–414, 1972.

    Article  ADS  Google Scholar 

  69. Schaefer, U. W., Bone marrow stem cells, in Low Temperature Preservation in Medicine and Biology, edited by M. J. Ashwood-Smith and J. Farrant ( University Park Press, Baltimore, 1980 ), pp. 139–154.

    Google Scholar 

  70. Capella, J. A., Kaufman, H. E., and Robbins, J. E., Preservation of viable corneal tissue, Cryobiology 2, 116–121, 1965.

    Article  Google Scholar 

  71. Kaufman, H. E., and Capella, J. A., Preserved corneal tissue for transplantation, J. Cryosurg. 1, 125–129, 1968.

    Google Scholar 

  72. Perry, V. P., A review of skin preservation, Cryobiology 3, 109–130, 1966.

    Article  Google Scholar 

  73. May, S. R., and DeClement, F. A., Skin banking methodology: an evaluation of package format, cooling and warming rates, and storage efficiency, Cryobiology 17, 33–45, 1980.

    Article  Google Scholar 

  74. Mazur, P., Kemp, J. A., and Miller, R. H., Survival of fetal rat pancreases frozen —78 to —196°, Proc. Nat. Acad. Sci. USA 73, 4105–4109, 1976.

    Article  ADS  Google Scholar 

  75. Christiansen, M. N., and St. John, The nature of chilling injury and its resistance in plants, in Analysis and Improvement of Plant Cold Hardiness, edited by C. R. Olien and M. N. Smith ( CRC Press, Boca Raton, LA, 1981 ), pp. 1–16.

    Google Scholar 

  76. Sidel, V. W., and Solomon, A. K., Entrance of water into human red cells under an osmotic pressure gradient, J. Gen. Physiol. 41, 243–257, 1957.

    Article  Google Scholar 

  77. Dayson, H., and Danielli, J. F., The Permeability of Natural Membranes, 2d ed. (Cambridge University Press, Cambridge, England, 1952 ).

    Google Scholar 

  78. Papanek, T. H., The water permeabiity of the human erythrocyte in the temperature range +25°C to –10°C (Ph.D. dissertation, M.I.T., Cambridge, MA, 1978 ).

    Google Scholar 

  79. Levin, R. L., Cravalho, E. G., and Huggins, C. E., A membrane model describing the effect of temperature on the water conductivity of erythrocyte membranes at subzero temperatures, Cryobiology 13, 415–429, 1976.

    Article  Google Scholar 

  80. Rich, G. T., Sha’afi, R. I., Romualdez, A., and Solomon, A. K., Effect of osmolality on the hydraulic permeability coefficient of red cells, J. Gen. Physiol. 52, 941–954, 1968.

    Article  Google Scholar 

  81. Farmer, R. E., and Macey, R. I., Perturbation of red cell volume: Rectification of osmotic flow, Biochim. Biophys. Acta 196, 53–65, 1970.

    Article  Google Scholar 

  82. Levin, R. L., Cravalho, E. G., and Huggins, C. E., The concentration polarization effect in a multicomponent electrolyte solution—the human erythrocyte, J. Theor. Biol. 71, 225–254, 1978.

    Article  Google Scholar 

  83. Levin, R. L., Cravalho, E. G., and Huggins, C. E., The concentration polarization effect in frozen erythrocytes, J. Biomech. Eng. 99, 65–73, 1977.

    Article  Google Scholar 

  84. Rand, R. P., Mechanical properties of the red cell membrane, II. Visco-elastic breakdown of the membrane, Biophys. J. 4, 303–316, 1964.

    Article  ADS  Google Scholar 

  85. Boroske, E., Elwenspoek, M., and Helfrich, W., Osmotic shrinkage of giant egg-lecithin vesicles, Biophys. J. 34, 95–109, 1981.

    Article  Google Scholar 

  86. Farrant, J., and Woolgar, A. E., Human red cells under hypertonic conditions: A model system for investigating freezing damage, 1. Sodium chloride, Cryobiology 9, 9–15, 1972.

    Article  Google Scholar 

  87. Levin, R. L., Cravalho, E. G., and Huggins, C. E., Effect of solution nonideality on erythrocyte volume regulation, Biochim. Biophys. Acta 465, 179–190, 1977.

    Article  Google Scholar 

  88. O’Callaghan, M. G., An analysis of the heat and mass transport during the freezing of biomaterials (Ph.D. dissertation, M.I.T., Cambridge, MA, 1978 ).

    Google Scholar 

  89. Levin, R. L., The effect of solute polarization on the freezing and thawing of aqueous solutions, Trans. ASME, 80-WA/HT-21, 1980.

    Google Scholar 

  90. Korber, C., Schiewe, M. W., and Wollhover, C., Solute polarization during planar freezing of aqueous salt solutions, Int. J. Heat Mass Transfer 26, 1241–1253, 1983.

    Article  Google Scholar 

  91. Brower, W. E., Freund, M. J., Baudino, M. D., and Ringwald, C., An hypothesis for survival of spermatozoa via encapsulation during plane front freezing, Cryobiology 18, 277–291, 1981.

    Article  Google Scholar 

  92. Toscano, W. M., Cravalho, E. G., Silvares, O. M., and Huggins, C. E., The thermodynamics of intracellular ice nucleation in the freezing of erythrocytes, Trans. ASME J. Heat Transfer 97, 326–332, 1975.

    Article  Google Scholar 

  93. McGrath, J. J., Cravalho, E. G., and Huggins, C. E., An experimental comparison of intracellular ice formation and freeze–thaw survival of HeLa S-3 cells, Cryobiology 12, 540–550, 1975.

    Article  Google Scholar 

  94. Levin, R. L., Cravalho, E. G., and Huggins, C. E., Water transport in a cluster of closely packed erythrocytes at subzero temperatures, Cryobiology 14, 549–558, 1977.

    Article  Google Scholar 

  95. Levin, R. L., and Miller, T. E., An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells, Cryobiology 18, 32–48, 1981.

    Article  Google Scholar 

  96. Rubinsky, B., and Cravalho, E. G., An analytical model for the prediction of the local concentration of cryophylactic agents in perfused organs, Cryobiology 16, 362–371, 1979.

    Article  Google Scholar 

  97. Diller, K. R., Quantitative low temperature optical microscopy of biological systems, J. Microscopy 126, 9–28, 1982.

    Article  Google Scholar 

  98. Leibo, S. P., Fundamental cryobiology of mouse ova and embryos, in The Freezing of Mammalian Embryos, edited by K. Elliot and J. Whelan, Ciba Foundation Symposium no. 52 ( Elsevier, Amsterdam, 1977 ), pp. 69–92.

    Google Scholar 

  99. Watson, W. W., Volumetric changes in human erythrocytes during freezing at constant cooling velocities (S. M. Thesis, M.I.T., Cambridge, MA, 1974 ).

    Google Scholar 

  100. Callow, R. A., and McGrath, J. J., Mass transfer response of cell-sized semipermeable vesicles during freezing: A comparison of computer simulations and cryomicroscopic data, in Advances in Bioengineering, L. Thibault, ed. ( ASME, New York, 1982 ), pp. 104–107.

    Google Scholar 

  101. Callow, R. A., and McGrath, J. J., Unilamellar liposomes as a model system to study freezing damage to cells, in Proceedings of the Tenth Annual Northeast Bioengineering conference, edited by E. W. Hansen, IEEE 82CH1747–5, pp. 269–272, 1982.

    Google Scholar 

  102. Diller, K. R., Cravalho, E. G., and Huggins, C. E., An experimental study of freezing in erythrocytes, Med. Biol. Eng. 14, 321–326, 1976.

    Article  Google Scholar 

  103. Leibo, S. P., McGrath, J. J., and Cravalho, E. G., Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate, Cryobiology 15, 257–271, 1978.

    Article  Google Scholar 

  104. Rall, W. F., Mazur, P., and McGrath, J. J., Depression of the ice nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide, Biophys. J. 41, 1–12, 1983.

    Article  Google Scholar 

  105. Rall, W. F., Reid, D. S., Farrant, J., Innocuous freezing during warming, Nature 286, 511–514, 1980.

    Article  ADS  Google Scholar 

  106. Steponkus, P. L., and Dowgert, M. F., Gas bubble formation during intracellular ice formation, Cryo-Letters 2, 42–47, 1981.

    Google Scholar 

  107. Schwartz, G. J., and Diller, K. R., Design and fabrication of a simple, versatile cryomicroscope stage, Cryobiology 19, 529–538, 1982.

    Article  Google Scholar 

  108. Evans, C. D., and Diller, K. R., A microprocessor-programmable, controlled-temperature microscope stage for microvascular studies, Microvasc. Res. 24, 314–325, 1982.

    Article  Google Scholar 

  109. Cosman, M. D., Cravalho, E. G., and Huggins, C. E., A cryomicroscope data acquisition system: design and performance, Cryobiology,submitted.

    Google Scholar 

  110. Schiewe, M. W., and Korber, C., Thermally defined cryomicroscopy and some applications on human leucocytes, J. Microsc. 126, 29–44, 1982.

    Article  Google Scholar 

  111. McGrath, J. J., and Khompis, V., A numerical heat transfer analysis of a cryomicroscope conduction stage, Trans. ASME, 81-WA/HT-56, 1981.

    Google Scholar 

  112. Lang, W., Nomarski differential interference—contrast microscopy, Carl Zeiss reprint, S41–210.2–5-e, 1975.

    Google Scholar 

  113. Allen, R. D., David, G. B., and Nomarski, G., The Zeiss–Nomarski differential interference equipment for transmitted-light microscopy, Z. Wiss. Mikrosk. 69, 193–221, 1969.

    Google Scholar 

  114. Crowley, J. P., Rene, A., and Valeri, C. R., The recovery, structure, and function of human blood leukocytes after freeze-preservation, Cryobiology 11, 395–409, 1974.

    Article  Google Scholar 

  115. Dayian, G., and Rowe, A. W., Cryopreservation of human platelets for transfusion, A glycerol-glucose, moderate rate cooling procedure, Cryobiology 13, 1–8, 1976.

    Article  Google Scholar 

  116. Farrant, J., Walter, C. A., Lee, H., and McGann, L. E., Use of two-step cooling procedures to examine factors influencing cell survival following freezing and thawing, Cryobiology 14, 273–286, 1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

McGrath, J.J. (1985). Preservation of Biological Material by Freezing and Thawing. In: Shitzer, A., Eberhart, R.C. (eds) Heat Transfer in Medicine and Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8285-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8285-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8287-4

  • Online ISBN: 978-1-4684-8285-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation