Log in

TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Treatment failure in high risk neuroblastoma is largely due to development of chemoresistance. NF-κB activation is one of the resistance mechanisms for cancer cells to escape from chemotherapy-induced cell-death. TAK1 is an essential component in genotoxic stresses-induced NF-κB activation; however, the role of TAK1 in the development of chemoresistance in neuroblastoma remains unknown. Using a panel of neuroblastoma cell lines, we found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) on neuroblastoma cell lines. TAK1 inhibition also enhanced the inhibitory effect of Dox and VP-16 on anchorage-independent growth. Treatment of neuroblastoma cells with 5Z-7-oxozeaenol blocked Dox- and VP16-induced NF-κB activation and enhanced Dox- and VP16-induced apoptosis. Moreover, 5Z-7-oxozeaenol was able to overcome the established chemoresistance in LA-N-6 neuroblastoma cells. Using an orthotopic neuroblastoma mouse model, we found that 5Z-7-oxozeaenol significantly enhanced chemotherapeutic efficacy in vivo. Together, our results provide a proof-of-concept that TAK1 inhibition significantly increases the sensitivity of neuroblastoma cells to chemotherapy-induced cell-death and can serve as an effective adjunct to current chemotherapeutic regimens for high risk diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castleberry RP (1997) Neuroblastoma. Eur J Cancer 33:1430–1437 discussion 1437–1438

    Article  PubMed  CAS  Google Scholar 

  2. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27:289–297

    Article  PubMed  Google Scholar 

  3. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202–2211

    Article  PubMed  CAS  Google Scholar 

  4. Seeger RC (2011) Immunology and immunotherapy of neuroblastoma. Semin Cancer Biol 21:229–237

    Article  PubMed  CAS  Google Scholar 

  5. Sen R, Baltimore D (1986) Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928

    Article  PubMed  CAS  Google Scholar 

  6. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3)

  7. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    Article  PubMed  CAS  Google Scholar 

  8. Li F, Sethi G (2010) Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta 1805:167–180

    PubMed  CAS  Google Scholar 

  9. Aggarwal BB, Sung B (2011) NF-kappaB in cancer: a matter of life and death. Cancer Discov 1:469–471

    Article  PubMed  CAS  Google Scholar 

  10. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB (2011) NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30:1615–1630

    Article  PubMed  CAS  Google Scholar 

  11. Verissimo CS, Molenaar JJ, Fitzsimons CP, Vreugdenhil E (2011) Neuroblastoma therapy: what is in the pipeline? Endocr Relat Cancer 18:R213–231

    Article  PubMed  CAS  Google Scholar 

  12. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  13. Lee JH, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26:7741–7748

    Article  PubMed  CAS  Google Scholar 

  14. Sousa FG, Matuo R, Soares DG, Escarqueil AE, Henriques JA, Larsen AK, Saffi J (2012) PARPs and the DNA damage response. Carcinogenesis 33:1433–1440

    Article  PubMed  CAS  Google Scholar 

  15. Mortusewicz O, Ame JC, Schreiber V, Leonhardt H (2007) Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res 35:7665–7675

    Article  PubMed  CAS  Google Scholar 

  16. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  PubMed  CAS  Google Scholar 

  17. Janssens S, Tschopp J (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13:773–784

    Article  PubMed  CAS  Google Scholar 

  18. Wu ZH, Miyamoto S (2007) Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med (Berl) 85:1187–1202

    Article  CAS  Google Scholar 

  19. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011

    Article  PubMed  CAS  Google Scholar 

  20. Chen ZJ, Bhoj V, Seth RB (2006) Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13:687–692

    Article  PubMed  CAS  Google Scholar 

  21. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  22. Sun SC, Ley SC (2008) New insights into NF-kappaB regulation and function. Trends Immunol 29:469–478

    Article  PubMed  CAS  Google Scholar 

  23. Shim JH, **ao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB 1 or TAB 2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  PubMed  CAS  Google Scholar 

  24. Wu ZH, Wong ET, Shi Y, Niu J, Chen Z, Miyamoto S, Tergaonkar V (2010) ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol Cell 40:75–86

    Article  PubMed  CAS  Google Scholar 

  25. Yang Y, **a F, Hermance N, Mabb A, Simonson S, Morrissey S, Gandhi P, Munson M, Miyamoto S, Kelliher MA (2011) A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein 2 responses to DNA damage. Mol Cell Biol 31:2774–2786

    Article  PubMed  CAS  Google Scholar 

  26. Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell 40:63–74

    Article  PubMed  CAS  Google Scholar 

  27. ** HS, Lee DH, Kim DH, Chung JH, Lee SJ, Lee TH (2009) cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res 69:1782–1791

    Article  PubMed  CAS  Google Scholar 

  28. Liang L, Fan Y, Cheng J, Cheng D, Zhao Y, Cao B, Ma L, An L, Jia W, Su X, Yang J, Zhang H (2013) TAK1 ubiquitination regulates doxorubicin-induced NF-kappaB activation. Cell Signal 25:247–254

    Article  PubMed  CAS  Google Scholar 

  29. Melisi D, **a Q, Paradiso G, Ling J, Moccia T, Carbone C, Budillon A, Abbruzzese JL, Chiao PJ (2011) Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 103:1190–1204

    Article  PubMed  CAS  Google Scholar 

  30. Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, Guha R, Miyamoto S, Pommier Y, Caplen NJ (2011) RNAi screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets 11:976–986

    Article  PubMed  CAS  Google Scholar 

  31. Singh A, Sweeney MF, Yu M, Burger A, Greninger P, Benes C, Haber DA, Settleman J (2012) TAK1 inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell 148:639–650

    Article  PubMed  CAS  Google Scholar 

  32. Ahmed N, Zeng M, Sinha I, Polin L, Wei WZ, Rathinam C, Flavell R, Massoumi R, Venuprasad K (2011) The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 12:1176–1183

    Article  PubMed  CAS  Google Scholar 

  33. Shang X, Burlingame SM, Okcu MF, Ge N, Russell HV, Egler RA, David RD, Vasudevan SA, Yang J, Nuchtern JG (2009) Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther 8:2461–2469

    Article  PubMed  CAS  Google Scholar 

  34. Patterson DM, Shohet JM, Kim ES (2011) Preclinical models of pediatric solid tumors (neuroblastoma) and their use in drug discovery. Curr Protoc Pharmacol 14:14–17

    Google Scholar 

  35. Tsang PS, Cheuk AT, Chen QR, Song YK, Badgett TC, Wei JS, Khan J (2012) Synthetic lethal screen identifies NF-kB as a target for combination therapy with topotecan for patients with neuroblastoma. BMC Cancer 12:101

    Article  PubMed  CAS  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  37. Ninomiya-Tsuji J, Ka**o T, Ono K, Ohtomo T, Matsumoto M, Shiina M, Mihara M, Tsuchiya M, Matsumoto K (2003) A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 278:18485–18490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. A. Davidoff and Dr. R. Seeger for providing the neuroblastoma cell lines described in this paper. We also thank Kristine Yang for editing our manuscript. This work was supported by the NIH/NINDS Grant 1R01NS072420-01 (to J.Y.). ** Cheng and Wei Jia are recipients of China Scholarship Council oversea training Grants.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Additional information

Yihui Fan, ** Cheng and Sanjeev A. Vasudevan contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Cheng, J., Vasudevan, S.A. et al. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis 18, 1224–1234 (2013). https://doi.org/10.1007/s10495-013-0864-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0864-0

Keywords

Navigation