Log in

Reactive or proactive? An online retailer’s omnichannel strategy for managing consumer returns

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This study investigates two popular omnichannel strategies for managing consumer returns. The reactive strategy is online–offline return partnership, which offers eco-friendly and cost-effective reverse logistics. The proactive strategy involves conveying fit information through showrooms, in order to reduce returns. We apply a game-theoretic model to explore online retailers’ optimal choice among four strategies, namely, the benchmark strategy of pure online channel, the reactive strategy of return partnership, the proactive strategy of fit information, and the hybrid strategy of joint implementation. Our main findings are as follows. First, online retailers should not implement any omnichannel strategy on extremely low-end products. Second, offering fit information is essential for online retailers who sell sufficiently high-end products. Third, the single reactive strategy is optimal in terms of standardized products with moderate valuation. Finally, implementing both omnichannel strategies simultaneously may hurt online retailers, especially those owning an efficient logistics system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulla, H., Abbey, J. D., & Ketzenberg, M. (2022). How consumers value retailer’s return policy leniency levers: An empirical investigation. Production and Operations Management, 31(4), 1719–1733.

    Article  Google Scholar 

  • AlixPartners (2017). Retail viewpoint: Many happy returns for retailers. Available at: https://www.alixpartners.com/insights-impact/insights/retail-viewpoint-many-happy-returns-for-retailers/. Retrieved on: 26 May 2022.

  • Amazon (2022). Amazon physical store return policies. Available at: https://www.amazon.com/gp/help/customer/display.html?nodeId=202075110. Retrieved on: 26 May 2022.

  • Balakrishnan, A., Sundaresan, S., & Zhang, B. (2014). Browse-and-switch: Retail-online competition under value uncertainty. Production and Operations Management, 23(7), 1129–1145.

    Article  Google Scholar 

  • Bell, D. R., Gallino, S., & Moreno, A. (2018). Offline showrooms in omnichannel retail: Demand and operational benefits. Management Science, 64(4), 1629–1651.

    Article  Google Scholar 

  • Bell, D. R., Gallino, S., & Moreno, A. (2020). Customer supercharging in experience-centric channels. Management Science, 66(9), 4096–4107.

    Article  Google Scholar 

  • De Giovanni, P., & Zaccour, G. (2022). A selective survey of game-theoretic models of closed-loop supply chains. Annals of Operations Research, 314(1), 77–116.

    Article  MathSciNet  Google Scholar 

  • De, P., Hu, Y., & Rahman, M. S. (2013). Product-oriented web technologies and product returns: An exploratory study. Information Systems Research, 24(4), 998–1010.

    Article  Google Scholar 

  • Ertekin, N., & Agrawal, A. (2020). How does a return period policy change affect multichannel retailer profitability? Manufacturing & Service Operations Management, 23(1), 210–229.

    Article  Google Scholar 

  • Ertekin, N., Ketzenberg, M. E., & Heim, G. R. (2019). Assessing impacts of store and salesperson dimensions of retail service quality on consumer returns. Production and Operations Management, 29(5), 1232–1255.

    Article  Google Scholar 

  • Figuccia, P. (2016). OnePlus closes its offline retail stores. Available at: https://www.gizchina.com/2016/09/02/oneplus-closes-its-offline-retail-stores/. Retrieved on: 26 May 2022.

  • Gallino, S., & Moreno, A. (2018). The value of fit information in online retail: Evidence from a randomized field experiment. Manufacturing & Service Operations Management, 20(4), 767–787.

    Article  Google Scholar 

  • Gao, F., Agrawal, V. V., & Cui, S. L. (2021). The effect of multichannel and omnichannel retailing on physical stores. Management Science, 68(2), 809–826.

    Article  Google Scholar 

  • Gao, F., & Su, X. (2017). Online and offline information for omnichannel retailing. Manufacturing & Service Operations Management, 19(1), 84–98.

    Article  Google Scholar 

  • Govindan, K., Agarwal, V., Darbari, J. D., & Jha, P. C. (2017). An integrated decision making model for the selection of sustainable forward and reverse logistic providers. Annals of Operations Research, 273, 607–650.

    Article  MathSciNet  Google Scholar 

  • Happy Returns (2021). Happy Returns & ShipBob announce integration partnership to help retailers reduce costs, increase exchanges, and raise shopper lifetime value. Available at: https://happyreturns.com/blog/happy-returns-shipbob-partner-to-reduce-returns-costs. Retrieved on: 26 May 2022.

  • Happy Returns (2022). Sustainable returns & exchanges. Available at: https://happyreturns.com/resource/reduce-your-cardboard-footprint. Retrieved on: 23 May 2022.

  • Hu, Y., Qu, S., Li, G., & Sethi, S. P. (2021). Power structure and channel integration strategy for online retailers. European Journal of Operational Research, 294(3), 951–964.

    Article  MathSciNet  Google Scholar 

  • Huang, M., & **, D. (2020). Impact of buy-online-and-return-in-store service on omnichannel retailing: A supply chain competitive perspective. Electronic Commerce Research and Applications, 41, 100977.

    Article  Google Scholar 

  • Hwang, E. H., Nageswaran, L., & Cho, S. H. (2021). Value of online–off-line return partnership to off-line Retailers. Manufacturing & Service Operations Management, 24(3), 1630–1649.

    Article  Google Scholar 

  • **, D., Caliskan-Demirag, O., Chen, F., & Huang, M. (2020). Omnichannel retailers’ return policy strategies in the presence of competition. International Journal of Production Economics, 225, 107595.

    Article  Google Scholar 

  • **, D., & Huang, M. (2021). Competing e-tailers’ adoption strategies of buy-online-and-return-in-store service. Electronic Commerce Research and Applications, 47, 101047.

    Article  Google Scholar 

  • **g, B. (2018). Showrooming and webrooming: Information externalities between online and offline sellers. Marketing Science, 37(3), 469–483.

    Article  Google Scholar 

  • Khusainova, G. (2019). There is no such thing as a free return. Available at: https://www.forbes.com/sites/gulnazkhusainova/2019/03/28/there-is-no-such-thing-as-a-free-return/?sh=61ff01407135. Retrieved on 21 May 2022.

  • Konur, D. (2021). Keep your enemy close? Competitive online brands’ expansion with individual and shared showrooms. Omega, 99, 102206.

    Article  Google Scholar 

  • Kumar, A., Mehra, A., & Kumar, S. (2019). Why do stores drive online sales? Evidence of underlying mechanisms from a multichannel retailer. Information Systems Research, 30(1), 319–338.

    Article  Google Scholar 

  • Li, G., Li, L., Choi, T. M., & Sethi, S. P. (2019a). Green supply chain management in Chinese firms: Innovative measures and the moderating role of quick response technology. Journal of Operations Management, 66(7–8), 958–988.

    Google Scholar 

  • Li, G., Li, L., Sethi, S. P., & Guan, X. (2019b). Return strategy and pricing in a dual-channel supply chain. International Journal of Production Economics, 215, 153–164.

    Article  Google Scholar 

  • Li, G., Lim, M. K., & Wang, Z. H. (2020). Stakeholders, green manufacturing, and practice performance: Empirical evidence from Chinese fashion businesses. Annals of Operations Research, 290, 961–982.

    Article  Google Scholar 

  • Li, G., Zhang, X., Chiu, S.-M., Liu, M., & Sethi, S. P. (2019c). Online market entry and channel sharing strategy with direct selling diseconomies in the sharing economy era. International Journal of Production Economics, 218, 135–147.

    Article  Google Scholar 

  • Lin, J., Choi, T.-M., & Kuo, Y.-H. (2023). Will providing return-freight-insurances do more good than harm to dual-channel e-commerce retailers? European Journal of Operational Research, 307(3), 1225–1239.

    Article  Google Scholar 

  • Liu, B. S., Zhu, W. W., Shen, Y. H., Chen, Y., Wang, T., Chen, F. W., Liu, M. W., & Zhou, S. H. (2022a). A study about return policies in the presence of consumer social learning. Production and Operations Management, 31(6), 2571–2587.

    Article  Google Scholar 

  • Liu, J., & **ong, H. (2023). Information disclosure, consumer returns, and operational costs in omnichannel retailing. Naval Research Logistics, 70(4), 376–391.

    Article  MathSciNet  Google Scholar 

  • Liu, Y., **ao, Y., & Dai, Y. (2022b). Omnichannel retailing with different order fulfillment and return options. International Journal of Production Research, 61(15), 5053–5074.

    Article  Google Scholar 

  • Luo, X., Zhang, Y., Zeng, F., & Qu, Z. (2020). Complementarity and cannibalization of offline-to-online targeting: A field experiment on omnichannel commerce. MIS Quarterly, 44(2), 957–982.

    Article  Google Scholar 

  • Ma, B., Di, C., & Hsiao, L. (2020). Return window decision in a distribution channel. Production and Operations Management, 29(9), 2121–2137.

    Article  Google Scholar 

  • Mandal, P., Basu, P., & Saha, K. (2021). Forays into omnichannel: An online retailer’s strategies for managing product returns. European Journal of Operational Research, 292(2), 633–651.

    Article  MathSciNet  Google Scholar 

  • McWilliams, B. (2012). Money-back guarantees: Hel** the low-quality retailer. Management Science, 58(8), 1521–1524.

    Article  Google Scholar 

  • Mehra, A., Kumar, S., & Raju, J. S. (2018). Competitive strategies for brick-and-mortar stores to counter “showrooming.” Management Science, 64(7), 3076–3090.

    Article  Google Scholar 

  • Mishra, S., & Singh, S. P. (2022). Designing dynamic reverse logistics network for post-sale service. Annals of Operations Research, 310(1), 89–118.

    Article  MathSciNet  PubMed  Google Scholar 

  • Nageswaran, L., Cho, S.-H., & Scheller-Wolf, A. (2020). Consumer return policies in omnichannel operations. Management Science, 66(12), 5558–5575.

    Article  Google Scholar 

  • Ofek, E., Katona, Z., & Sarvary, M. (2011). “Bricks and clicks”: The impact of product returns on the strategies of multichannel retailers. Marketing Science, 30(1), 42–60.

    Article  Google Scholar 

  • Pun, H., Chen, J., & Li, W. (2020). Channel strategy for manufacturers in the presence of service freeriders. European Journal of Operational Research, 287(2), 460–479.

    Article  MathSciNet  Google Scholar 

  • Raj, S. P., Rhee, B.-D., & Sivakumar, K. (2020). Manufacturer adoption of a unilateral pricing policy in a multi-channel setting to combat customer showrooming. Journal of Business Research, 110, 104–118.

    Article  Google Scholar 

  • Schoolov, K. (2022). How Amazon plans to fix its massive returns problem. Available at: https://www.cnbc.com/2022/04/10/how-amazon-plans-to-fix-its-massive-returns-problem.html. Retrieved on 21 May 2022.

  • Shoulberg, W. (2020). Microsoft closing its stores for one reason: They are bad. Available at: https://www.forbes.com/sites/warrenshoulberg/2020/07/01/microsoft-closing-its-stores-for-one-reason-they-are-bad/?sh=15f25b5a4eec. Retrieved on 26 May 2022.

  • Su, X. (2009). Consumer returns policies and supply chain performance. Manufacturing & Service Operations Management, 11(4), 595–612.

    Article  Google Scholar 

  • Sun, J. S., & Li, G. (2022). Optimizing emission reduction task sharing: Technology and performance perspectives. Annals of Operations Research, 316, 581–602.

    Article  MathSciNet  Google Scholar 

  • Sun, Y., Wang, Z., Yan, S., & Han, X. (2022). Digital showroom strategies for dual-channel supply chains in the presence of consumer webrooming behavior. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04475-5

    Article  PubMed  PubMed Central  Google Scholar 

  • **ao, T., Choi, T.-M., & Cheng, T. C. E. (2022). Collection responsibility choice for competing e-tailing supply chains with consumer returns. IEEE Transactions on Engineering Management. https://doi.org/10.1109/tem.2021.3120288

    Article  Google Scholar 

  • **ao, T., & Shi, J. (2014). Consumer returns reduction and information revelation mechanism for a supply chain. Annals of Operations Research, 240(2), 661–681.

    Article  MathSciNet  Google Scholar 

  • Xu, X., Hong, Z., Chen, Y., & Cheng, T. C. E. (2023). When is it wise to use artificial intelligence for platform operations considering consumer returns? European Journal of Operational Research, 308(3), 1188–1205.

    Article  MathSciNet  Google Scholar 

  • Yang, G. Y., Ji, G. J., & Tan, K. H. (2022). Impact of artificial intelligence adoption on online returns policies. Annals of Operations Research, 308, 703–726.

    Article  MathSciNet  Google Scholar 

  • Yang, L., Li, X., **a, Y., & Aneja, Y. P. (2023). Returns operations in omnichannel retailing with buy-online-and-return-to-store. Omega, 119, 102874.

    Article  Google Scholar 

  • Zhang, T., & Choi, T.-M. (2020). Optimal consumer sales tax policies for online–offline retail operations with consumer returns. Naval Research Logistics, 68(6), 701–720.

    Article  MathSciNet  Google Scholar 

  • Zhang, W., He, Y., Gou, Q., & Yang, W. (2021). Optimal advance selling strategy with information provision for omnichannel retailers. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03896-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 72172130].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Proofs for main results

1.1 Proof of Proposition 1

With Eq. (1), \({U}_{BORO}\ge 0\iff {h}_{o}\le \frac{\theta (v-p)}{2-\theta }\iff d=\frac{\theta (v-p)}{2-\theta }\). Substitute \(d\) into the profit function in Eq. (4). Thus, we have \(\pi (p)\) being concave in \(p\), since \(\frac{{\partial }^{2}\pi }{\partial {p}^{2}}=\frac{2{\theta }^{2}}{-2+\theta }\le 0\). Using the first order condition (FOC), we can obtain \({p}^{B*}=\frac{c+v}{2}+\frac{(1-\theta ){{\text{c}}}_{o}}{2\theta }\). Then \({d}^{B*}={d}_{BORO}^{B*}=\frac{\theta (v-c)-(1-\theta ){c}_{o}}{2(2-\theta )}\), and \({\pi }^{B*}=\frac{(\theta (v-c)-(1-\theta ){c}_{o}{)}^{2}}{4(2-\theta )}\). The condition \(0\le {d}^{B*}\le 1\) yields the feasible area \({\underline{v}}^{B}\le v\le {\overline{v} }^{B},\) where \({\underline{v}}^{B}=c+\frac{(1-\theta ){{\text{c}}}_{o}}{\theta }\) and \({\overline{v} }^{B}=c+\frac{4+\left(1-\theta \right){{\text{c}}}_{o}}{\theta }-2\).

1.2 Proof of Lemma 1

Clearly, we have \(\frac{\partial {p}^{B*}}{\partial v}=\frac{1}{2}\), \(\frac{\partial {\pi }^{B*}}{\partial v}=\frac{\theta (\theta (v-c)-(1-\theta ){c}_{o})}{2(2-\theta )}\ge 0\), \(\frac{\partial {p}^{B*}}{\partial \theta }=-\frac{{{\text{c}}}_{o}}{2{\theta }^{2}}<0\), \(\frac{\partial {\pi }^{B*}}{\partial \theta }=\frac{(\theta (v-c)-(1-\theta ){c}_{o})(\left(4-\theta \right)\left(v-c\right)+(3-\theta ){c}_{o})}{4{(2-\theta )}^{2}}\ge 0\), \(\frac{\partial {p}^{B*}}{\partial {c}_{o}}=\frac{1-\theta }{2\theta }\ge 0\), and \(\frac{\partial {\pi }^{B*}}{\partial {c}_{o}}=\frac{-(1-\theta )(\theta (v-c)-(1-\theta ){c}_{o})}{2(2-\theta )}\le 0\). Thus, Lemma 1 is true.

1.3 Proofs of Propositions 2–4

The derivations of equilibrium outcomes for other strategies follow in a similar way. For brevity, we omit the similar analysis. In the reactive strategy, we have \({d}_{BORO}^{R*}={h}_{s}\), \({d}_{BORS}^{R*}=\frac{\theta (v-c)-(3-\theta ){h}_{s}-(1-\theta ){c}_{s}}{2}\) and \({d}^{R*}=\frac{\theta \left(v-c\right)-(1-\theta )({c}_{s}+{h}_{s})}{2}\). The conditions \({d}_{BORS}^{R*}\ge 0\) and \({d}^{R*}\le 1\) yield the feasible area \({\underline{v}}^{R}\le v\le {\overline{v} }^{R},\) where \({\underline{v}}^{R}=c+\frac{\left(1-\theta \right){{\text{c}}}_{s}+(3-\theta ){h}_{s}}{\theta }\) and \({\overline{v} }^{R}=c+\frac{2+\left(1-\theta \right){({\text{c}}}_{s}+{h}_{s})}{\theta }\). Furthermore, \({\underline{v}}^{R}\le {\overline{v} }^{R}\) requires \({h}_{s}\le 1\).

In the proactive strategy, we have \({d}_{BORO}^{P*}=\frac{{h}_{s}}{2(1-\theta )}\), \({d}_{ESBO}^{P*}=\frac{v-c}{2}-\frac{{h}_{s}}{2\theta (1-\theta )}\) and \({d}^{P*}=\frac{v-c}{2}-\frac{{h}_{s}}{2\theta }\). The feasible area for the proactive strategy is \({\underline{v}}^{P}\le v\le {\overline{v} }^{P},\) where \({\underline{v}}^{P}=c+\frac{{h}_{s}}{(1-\theta )\theta }\) and \({\overline{v} }^{P}=c+\frac{{h}_{s}}{\theta }+2\). Moreover, \({\underline{v}}^{P}\le {\overline{v} }^{P}\) requires \({h}_{s}\le 2\left(1-\theta \right)\).

In the hybrid strategy, we have \({d}_{BORO}^{H*}={h}_{s}\), \({d}_{BORS}^{H*}=\frac{(2\theta -1){h}_{s}}{1-\theta }\), \({d}_{ESBO}^{H*}=\frac{v-c}{2}-\frac{(1-\theta +2{\theta }^{2}){h}_{s}}{2\theta (1-\theta )}\) and \({d}^{H*}=\frac{v-c}{2}-\frac{{h}_{s}}{2\theta }\). Moreover, \({d}_{BORS}^{H*}=\frac{(2\theta -1){h}_{s}}{1-\theta }>0\) requires \(\theta >0.5\), and \(0\le {d}^{H*}\le 1\) yields \({\underline{v}}^{H}\le v\le {\overline{v} }^{H},\) where \({\underline{v}}^{H}=c+\frac{\left(1-\theta +2{\theta }^{2}\right){h}_{s}}{(1-\theta )\theta }\) and \({\overline{v} }^{H}=c+\frac{{h}_{s}}{\theta }+2\). Moreover, \({\underline{v}}^{H}\le {\overline{v} }^{H}\) requires \({h}_{s}\le \frac{1-\theta }{\theta }\).

1.4 Proofs of Lemmas 2–4

The proofs are similar to that of Lemma 1. For brevity, we omit the similar analyses.

1.5 Proof of Lemma 5

First, we have \({p}^{B*}-{p}^{R*}=\frac{\left(1-\theta \right)\left({{\text{c}}}_{o}-{{\text{c}}}_{s}+{h}_{s}\right)}{2\theta }>0\), \({p}^{B*}-{p}^{P*}=\frac{\left(1-\theta \right){{\text{c}}}_{o}+{h}_{s}}{2\theta }>0\), and \({p}^{R*}-{p}^{P*}=\frac{\left(1-\theta \right){{\text{c}}}_{s}+\theta {h}_{s}}{2\theta }>0\). Obviously, \({{p}^{H*}=p}^{P*}<{p}^{R*}<{p}^{B*}\).

Second, we have \(\Delta {d}^{RB}={d}^{R*}-{d}^{B*}={d}_{BORO}^{R*}+{d}_{BORS}^{R*}-{d}^{B*}=\frac{\left(1-\theta \right)\left(\theta \left(v-c\right)-\left(2-\theta \right)\left({{\text{c}}}_{s}+{h}_{s}\right)+{{\text{c}}}_{o}\right)}{2\left(2-\theta \right)}\), \(\Delta {d}^{PB}={d}^{P*}-{d}^{B*}={d}_{BORO}^{P*}+{d}_{ESBO}^{P*}-{d}^{B*}=\frac{2\theta \left(1-\theta \right)\left(v-c\right)+\theta \left(1-\theta \right){{\text{c}}}_{o}-\left(2-\theta \right){h}_{s}}{2\theta \left(2-\theta \right)}\), and \(\Delta {d}^{PR}={d}^{P*}-{d}^{R*}={d}_{BORO}^{P*}+{d}_{ESBO}^{P*}-{d}_{BORO}^{R*}-{d}_{BORS}^{R*}=\frac{\theta \left(1-\theta \right)\left(v-c+{{\text{c}}}_{s}\right)-(1-\theta +{\theta }^{2}){h}_{s}}{2\theta }\).

Obviously, all of the demand differences above increase with \(v\). Since \(\Delta {d}^{RB}\left({\underline{v}}^{R}\right)=\frac{\left(1-\theta \right)\left({{\text{c}}}_{o}-{{\text{c}}}_{s}+{h}_{s}\right)}{2\left(2-\theta \right)}>0\), \(\Delta {d}^{PB}\left({\underline{v}}^{P}\right)=\frac{\left(1-\theta \right){{\text{c}}}_{o}+{h}_{s}}{2\left(2-\theta \right)}>0\), and \(\Delta {d}^{PR}\left({\underline{v}}^{P}\right)=\frac{\left(1-\theta \right)\left({{\text{c}}}_{s}+{h}_{s}\right)}{2}>0\), it follows that \(\Delta {d}^{RB}\), \(\Delta {d}^{PB}\), and \(\Delta {d}^{PR}\) are always positive. Finally, we have \({{d}^{H*}=d}^{P*}>{d}^{R*}>{d}^{B*}\).

1.6 Proof of Proposition 5

The common feasible domain for the two strategies is \(\theta >0.5\), \({h}_{s}\le {\text{min}}(2\left(1-\theta \right),\frac{1-\theta }{\theta })\) and \({\text{max}}({\underline{v}}^{P},{\underline{v}}^{H})\le v\le {\text{min}}({\overline{v} }^{P},{\overline{v} }^{H})\). Given that \({\pi }^{H*}-{\pi }^{P*}=\frac{(2\theta -1){h}_{s}{(c}_{o}-{2c}_{s})}{2}\), we have \({\pi }^{H*}\le {\pi }^{P*}\) if \({c}_{o}\le 2{c}_{s}\) and \({\pi }^{H*}>{\pi }^{P*}\) if \({c}_{o}>2{c}_{s}\) in the common feasible domain.

1.7 Proof of Proposition 6

The common feasible area of the three strategies is \({h}_{s}\le {\text{min}}(2\left(1-\theta \right),1)\) and \({\text{max}}\left({\underline{v}}^{B},{\underline{v}}^{R},{\underline{v}}^{P}\right)\le v\le {{\text{min}}({\overline{v} }^{B},\overline{v} }^{R},{\overline{v} }^{P})\).

The profit differences are \({\pi }^{R*}-{\pi }^{B*}=\frac{(1-\theta )}{4(2-\theta )}{A}_{1}\), \({\pi }^{P*}-{\pi }^{B*}=\frac{{A}_{2}}{4\theta \left(2-\theta \right)}\), and \({\pi }^{P*}-{\pi }^{R*}=\frac{{A}_{3}}{4\theta }\), where \({A}_{1}={\theta }^{2}{(v-c)}^{2}+2\theta \left({c}_{o}-\left(2-\theta \right)\left({c}_{s}+{h}_{s}\right)\right)\left(v-c\right)-\left(2-\theta \right)\left(4{c}_{o}{h}_{s}-2{c}_{s}{h}_{s}\left(3-\theta \right)-\left({{c}_{s}}^{2}+{{h}_{s}}^{2}\right)\left(1-\theta \right)\right)-\left(1-\theta \right){{c}_{o}}^{2}\), \({A}_{2}=2\left(1-\theta \right){\theta }^{2}{\left(v-c\right)}^{2}+2\theta \left(\left(1-\theta \right)\theta {c}_{o}-{h}_{s}\left(2-\theta \right)\right)\left(v-c\right)-{{c}_{o}}^{2}\theta +(2-\theta ){({h}_{s}-{c}_{o}\theta )}^{2}\), and \({A}_{3}=\left(1-\theta \right){\theta }^{2}{\left(v-c\right)}^{2}+2\theta \left(\left(1-\theta \right)\theta {c}_{s}-{h}_{s}(1-\theta +{\theta }^{2})\right)\left(v-c\right)-{{c}_{s}}^{2}{(1-\theta )}^{2}\theta +2{h}_{s}\theta ({c}_{o}(1-2\theta )-{c}_{s}(3-\theta )(1-\theta ))-{{h}_{s}}^{2}({(1-\theta )}^{2}\theta -1)\).

Obviously, \({A}_{1}\), \({A}_{2}\), and \({A}_{3}\) are convex in \(v\). Letting \({A}_{1}=0\) yields \({v}_{RB1}=c+\frac{\left(2-\theta \right)\left({c}_{s}+{h}_{s}\right)-{c}_{o}-\sqrt{2-\theta }\left({c}_{o}-{c}_{s}+{h}_{s}\right)}{\theta }\) and \({v}_{RB2}=c+\frac{\left(2-\theta \right)\left({c}_{s}+{h}_{s}\right)-{c}_{o}+\sqrt{2-\theta }\left({c}_{o}-{c}_{s}+{h}_{s}\right)}{\theta }\). Since \({v}_{RB1}-{\underline{v}}^{R}=-\frac{\left({c}_{o}-{c}_{s}+{h}_{s}\right)\left(1+\sqrt{2-\theta }\right)}{\theta }<0\), we have \({A}_{1}\le 0\) if \(v\le {v}_{RB2}\), and \({A}_{1}>0\) if \(v>{v}_{RB2}\). Denote \({v}_{RB2}\) with \({\widehat{v}}_{RB}\). We then have \({\pi }^{R*}\le {\pi }^{B*}\) if \(v\le {\widehat{v}}_{RB}\), and \({\pi }^{R*}>{\pi }^{B*}\) if \(v>{\widehat{v}}_{RB}\) in the common feasible domain.

In a similar way, we obtain thresholds \({\widehat{v}}_{PB}=c+\frac{\left(2-\theta \right){h}_{s}-\theta \left(1-\theta \right){c}_{o}+\sqrt{\theta (2-\theta )}\left(\left(1-\theta \right){c}_{o}+{h}_{s}\right)}{2(1-\theta )\theta }\) and \({\widehat{v}}_{PR}=c+\frac{(1-\theta +{\theta }^{2}){h}_{s}-\theta (1-\theta ){c}_{s}+\sqrt{\theta ({{c}_{s}}^{2}{(1-\theta )}^{2}+2{c}_{s}{h}_{s}(2-5\theta +3{\theta }^{2})+{h}_{s}({\theta }^{2}{h}_{s}+2(3\theta -2{\theta }^{2}-1){c}_{o}))}}{(1-\theta )\theta }\), such that \({\pi }^{P*}\le {\pi }^{B*}\) if \(v\le {\widehat{v}}_{PB}\) and \({\pi }^{P*}\le {\pi }^{R*}\) if \(v\le {\widehat{v}}_{PR}\) in the common feasible domain.

Given that \(\frac{\partial {\widehat{v}}_{RB}}{\partial \theta }=\frac{(-4+2\sqrt{2-\theta }+\theta )({c}_{o}-{c}_{s}+{h}_{s})-2\sqrt{2-\theta }{c}_{s}-6\sqrt{2-\theta }{h}_{s}}{2\sqrt{2-\theta }{\theta }^{2}}<0\), \({\widehat{v}}_{RB}\) is decreasing in \(\theta \). Meanwhile, \(\frac{{\partial }^{2}{\widehat{v}}_{PB}}{\partial {\theta }^{2}}=\frac{{\left(1-\theta \right)}^{3}\theta \left(3-2\theta \right){c}_{o}+(3\theta -12{\theta }^{2}+21{\theta }^{3}-12{\theta }^{4}+2{\theta }^{5}+(8-28\theta +36{\theta }^{2}-16{\theta }^{3}+2{\theta }^{4})\sqrt{(2-\theta )\theta }){h}_{s}}{2{(1-\theta )}^{3}{\theta }^{2}{((2-\theta )\theta )}^{3/2})}\break >0\), which indicates that \({\widehat{v}}_{PB}\) is convex in \(\theta \). Moreover, \({\widehat{v}}_{RB}\left(\theta =0\right)=+\infty ={\widehat{v}}_{PB}\left(\theta =0\right)\), \({\widehat{v}}_{RB}\left(\theta =0.1\right)=3.78{c}_{o}+5.21{c}_{s}+32.78{h}_{s}>{\widehat{v}}_{PB}\left(\theta =0.1\right)=1.68{c}_{o}+12.98{h}_{s}\), and \({\widehat{v}}_{RB}\left(\theta =1\right)=c+2{c}_{s}<{\widehat{v}}_{PB}\left(\theta =1\right)=+\infty \). Thus, there exists a unique \(\widehat{\theta }\) for \({\widehat{v}}_{RB}={\widehat{v}}_{PB}\), which is the root of \(2{c}_{s}\left(1-\theta \right)\left(\sqrt{2-\theta }+\theta -2\right)-2{h}_{s}+{h}_{s}\left(\left(\sqrt{\theta }-2\right)\sqrt{2-\theta }+\left(5+2\sqrt{2-\theta }-2\theta \right)\theta \right)-(1-\theta )(2\sqrt{2-\theta }-2+\theta -\sqrt{(2-\theta )\theta }{)c}_{o}=0\).

When \(\theta <\widehat{\theta }\), we have \({\widehat{v}}_{RB}>{\widehat{v}}_{PB}\); otherwise, we have \({\widehat{v}}_{RB}\le {\widehat{v}}_{PB}\). If \({\widehat{v}}_{RB}>{\widehat{v}}_{PB}\), we have \({\pi }^{P*}>{\pi }^{B*}>{\pi }^{R*}\) for \({\widehat{v}}_{PB}<v<{\widehat{v}}_{RB}\), which indicates that \({\widehat{v}}_{PB}>{\widehat{v}}_{PR}\). Therefore, \({\widehat{v}}_{RB}>{\widehat{v}}_{PB}>{\widehat{v}}_{PR}\) always holds when \(\theta <\widehat{\theta }\). Adversely, when \({\widehat{v}}_{RB}\le {\widehat{v}}_{PB}\), we have \({\pi }^{R*}\ge {\pi }^{B*}\ge {\pi }^{P*}\) for \({\widehat{v}}_{RB}\le v\le {\widehat{v}}_{PB}\), which indicates that \({\widehat{v}}_{PB}\le {\widehat{v}}_{PR}\). Thus, \({\widehat{v}}_{PR}\ge {\widehat{v}}_{PB}\ge {\widehat{v}}_{RB}\) always holds when \(\theta \ge \widehat{\theta }\). In summary, \({\widehat{v}}_{PR}<{\widehat{v}}_{PB}<{\widehat{v}}_{RB}\) if \(\theta <\widehat{\theta }\), and \({\widehat{v}}_{PR}\ge {\widehat{v}}_{PB}\ge {\widehat{v}}_{RB}\) if \(\theta \ge \widehat{\theta }\).

Therefore, for \(\theta \le 0.5\) or \(\theta >0.5\) and \({c}_{o}\le 2{c}_{s}\) in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{PB},{\widehat{v}}_{PR})\), the proactive strategy is optimal for the retailer; when \(\theta >\widehat{\theta }\) and \({\widehat{v}}_{RB}<v<{\widehat{v}}_{PR}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RB},{\widehat{v}}_{PB})\), the benchmark strategy is optimal.

1.8 Proof of Proposition 7

The common feasible area of the three strategies is \(\theta >0.5\), \({h}_{s}\le {\text{min}}(\frac{1-\theta }{\theta },1)\), and \({\text{max}}\left({\underline{v}}^{B},{\underline{v}}^{R},{\underline{v}}^{H}\right)\le v\le {{\text{min}}({\overline{v} }^{B},\overline{v} }^{R},{\overline{v} }^{H})\).

The profit differences are \({\pi }^{H*}-{\pi }^{B*}=\frac{{B}_{1}}{4(2-\theta )\theta }\), \({\pi }^{H*}-{\pi }^{R*}=\frac{{B}_{2}}{4\theta }\), where \({B}_{1}=2\left(1-\theta \right){\theta }^{2}{\left(v-c\right)}^{2}-2\theta (\left(2-\theta \right){h}_{s}-\left(1-\theta \right)\theta {c}_{o})\left(v-c\right)-\theta {{c}_{o}}^{2}+(2-\theta )({{h}_{s}}^{2}+{\theta }^{2}{{c}_{o}}^{2}-4{\theta h}_{s}(\left(2\theta -1\right){c}_{s}+\left(1-\theta \right){c}_{o}))\) and \({B}_{2}=\left(1-\theta \right){\theta }^{2}{\left(v-c\right)}^{2}-2\theta ({h}_{s}-\left(1-\theta \right)\theta ({h}_{s}+{c}_{s}))\left(v-c\right)+{{h}_{s}}^{2}-{\left({h}_{s}+{c}_{s}\right)}^{2}\theta {(1+\theta }^{2})+2({{c}_{s}}^{2}+{{h}_{s}}^{2}){\theta }^{2}\).

Obviously, \({B}_{1}\) and \({B}_{2}\) are convex in \(v\). Letting \({B}_{1}=0\) yields \({v}_{HB1}=c+\frac{\left(2-\theta \right){h}_{s}-\theta \left(1-\theta \right){{\text{c}}}_{o}-\sqrt{\theta (2-\theta )({{c}_{o}}^{2}{\left(1-\theta \right)}^{2}+2{c}_{o}{h}_{s}(3-7\theta +4{\theta }^{2})+{h}_{s}({h}_{s}+8(3\theta -2{\theta }^{2}-1){c}_{s}))}}{2(1-\theta )\theta }\) and \({v}_{HB2}=c+\frac{\left(2-\theta \right){h}_{s}-\theta \left(1-\theta \right){{\text{c}}}_{o}+\sqrt{\theta (2-\theta )({{c}_{o}}^{2}{\left(1-\theta \right)}^{2}+2{c}_{o}{h}_{s}(3-7\theta +4{\theta }^{2})+{h}_{s}({h}_{s}+8(3\theta -2{\theta }^{2}-1){c}_{s}))}}{2(1-\theta )\theta }\). Since \({v}_{HB1}-{\underline{v}}^{H}=-\frac{\theta \left(1-\theta \right){{\text{c}}}_{o}+\theta \left(4\theta -1\right){h}_{s}+\sqrt{\theta (2-\theta )({{c}_{o}}^{2}{\left(1-\theta \right)}^{2}+2{c}_{o}{h}_{s}(3-7\theta +4{\theta }^{2})+{h}_{s}({h}_{s}+8(3\theta -2{\theta }^{2}-1){c}_{s}))}}{2(1-\theta )\theta }<0\) for \(\theta >0.5\), we have \({B}_{1}\le 0\) if \(v\le {v}_{HB2}\) and \({B}_{1}>0\) if \({v>v}_{HB2}\). Denote \({v}_{HB2}\) with \({\widehat{v}}_{HB}\). We then have \({\pi }^{H*}\le {\pi }^{B*}\) if \(v\le {\widehat{v}}_{HB}\), and \({\pi }^{H*}>{\pi }^{B*}\) if \(v>{\widehat{v}}_{HB}\) in the common feasible domain.

Following a similar line of reasoning, we can obtain \({\pi }^{H*}\le {\pi }^{R*}\) if \(v\le {\widehat{v}}_{HR}\), and \({\pi }^{H*}>{\pi }^{R*}\) if \(v>{\widehat{v}}_{HR}\) in the common feasible domain, where \({\widehat{v}}_{HR}=c-{c}_{s}+\frac{\left(1-\theta +{\theta }^{2}\right){h}_{s}+({c}_{s}-{c}_{s}\theta +{h}_{s}\theta )\sqrt{\theta }}{(1-\theta )\theta }\).

With a proof similar to that of Proposition 6, we can see that \({\widehat{v}}_{RB}\) is decreasing in \(\theta \) and \({\widehat{v}}_{HR}\) is convex in \(\theta \), since \(\frac{{\partial }^{2}{\widehat{v}}_{HR}}{\partial {\theta }^{2}}=\frac{3\sqrt{\theta }{(1-\sqrt{\theta })}^{3}{c}_{s}+(8-24\sqrt{\theta }+24\theta -9\theta \sqrt{\theta }-3{\theta }^{2}){h}_{s}}{4{\theta }^{3}{(1-\sqrt{\theta })}^{3}}>0\). Moreover, we have \({\widehat{v}}_{RB}\left(\theta =0\right)=+\infty ={\widehat{v}}_{HR}\left(\theta =0\right)\), \({\widehat{v}}_{RB}\left(\theta =0.5\right)=0.44{c}_{o}+0.55{c}_{s}+5.44{h}_{s}>{\widehat{v}}_{HR}\left(\theta =0.5\right)=0.42{c}_{s}+4.42{h}_{s}\), and \({\widehat{v}}_{RB}\left(\theta =1\right)=c+2{c}_{s}<{\widehat{v}}_{HR}\left(\theta =1\right)=+\infty \). Thus, there exists a unique \({\widehat{\theta }}_{1}\) for \({\widehat{v}}_{RB}={\widehat{v}}_{HR}\), which is the root of \((1-\sqrt{2-\theta }-\sqrt{\theta }+\sqrt{\left(2-\theta \right)\theta }){c}_{o}-(2-\sqrt{2-\theta }-3\sqrt{\theta }+\theta +\sqrt{\left(2-\theta \right)\theta }){c}_{s}-(1+\sqrt{2-\theta }-\sqrt{\theta }-\theta -\sqrt{\left(2-\theta \right)\theta }){h}_{s}=0\). Consequently, for \(0.5<\theta <1\), we have \({\widehat{v}}_{HR}<{\widehat{v}}_{HB}<{\widehat{v}}_{RB}\) if \(\theta <{\widehat{\theta }}_{1}\), and \({\widehat{v}}_{HR}\ge {\widehat{v}}_{HB}\ge {\widehat{v}}_{RB}\) if \(\theta \ge {\widehat{\theta }}_{1}\).

In summary, for \(\theta >0.5\) and \({c}_{o}>2{c}_{s}\) in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{HB},{\widehat{v}}_{HR})\), the hybrid strategy is optimal; when \(\theta >{\widehat{\theta }}_{1}\) and \({\widehat{v}}_{RB}<v<{\widehat{v}}_{HR}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RB},{\widehat{v}}_{HB})\), the benchmark strategy is optimal.

1.9 Proof of Proposition 8

Let us define \(\Delta {\pi }^{HPr*}={\pi }^{Hr*}-{\pi }^{Pr*}=\frac{1}{8}(\left(1-\theta \right){{c}_{o}}^{2}+2{c}_{o}\left(2\left({c}_{s}+{h}_{s}\right)\theta -\left(2{c}_{s}+{h}_{s}\right)\right)+2{\left({c}_{s}+{h}_{s}\right)}^{2}-\frac{{{h}_{s}}^{2}}{1-\theta }-2({{c}_{s}}^{2}+6{c}_{s}{h}_{s}+{{h}_{s}}^{2})\theta )\), which is convex in \({c}_{o}\). Letting \(\Delta {\pi }^{HPr*}=0\) yields \({c}_{o1}=2{c}_{s}+\frac{\left(1-2\theta \right){h}_{s}-\sqrt{2}({c}_{s}-\theta {c}_{s}+\theta {h}_{s})}{1-\theta }\) and \({c}_{o2}=2{c}_{s}+\frac{\left(1-2\theta \right){h}_{s}+\sqrt{2}({c}_{s}-\theta {c}_{s}+\theta {h}_{s})}{1-\theta }\). Table 2 shows that the feasible domain for the hybrid strategy is \({c}_{o}{<h}_{s}+{c}_{s}\) and \({c}_{o}>{c}_{s}-\frac{(3\theta -1){h}_{s}}{1-\theta }\). Since \({c}_{o1}-{c}_{s}+\frac{\left(3\theta -1\right){h}_{s}}{1-\theta }=-\frac{\left(\sqrt{2}-1\right)\left(\left(1-\theta \right){c}_{s}+\theta {h}_{s}\right)}{1-\theta }<0\), and \({c}_{o2}-\left({h}_{s}+{c}_{s}\right)=\frac{{h}_{s}+\frac{\left(3+2\sqrt{2}\right)\left(1-\theta \right){c}_{s}}{\theta }}{1-\theta }>0\), both roots are outside of the feasible domain. Therefore, we have \({\pi }^{Hr*}<{\pi }^{Pr*}\) in the common feasible domain.

Table 2 Equilibrium outcomes in the case of partial refunds

The profit differences among other strategies are:

\({\pi }^{Rr*}-{\pi }^{Br*}=\frac{\left(1-\theta \right){\left({c}_{o}-2\left({c}_{s}+{h}_{s}\right)+\left({c}_{s}+{h}_{s}+v-c\right)\theta \right)}^{2}}{4\left(2-\theta \right)}>0\),

\({\pi }^{Pr*}-{\pi }^{Br*}=\frac{{(\left({c}_{o}+2(v-c)\right)\left(1-\theta \right)\theta -{h}_{s}(2-\theta ))}^{2}}{8(2-\theta )(1-\theta )\theta }>0\), and

\({\pi }^{Pr*}-{\pi }^{Rr*}=\frac{1}{8\left(1-\theta \right)\theta }(2{\theta }^{2}{\left(1-\theta \right)}^{2}(v-c{)}^{2}-4\left(1-\theta \right)\theta \left({h}_{s}-\left({c}_{s}+{h}_{s}\right)\left(1-\theta \right)\theta \right)\left(v-c\right)+{\left(1-\theta \right)}^{2}\theta \left(2{{c}_{s}}^{2}\theta -{\left({c}_{o}-2{c}_{s}\right)}^{2}\right)+{{h}_{s}}^{2}\left(2-\theta \right)\left(1-2{\left(1-\theta \right)}^{2}\theta \right)-2{h}_{s}(1-\theta )\theta (2{c}_{s}(2-\theta )(1-\theta )+{c}_{o}(2\theta -1)))\).

Letting \({\pi }^{Pr*}={\pi }^{Rr*}\) yields \(v=c+\frac{1}{2\left(1-\theta \right)\theta }(2({h}_{s}-({c}_{s}+{h}_{s})\theta +({c}_{s}+{h}_{s}){\theta }^{2})\pm \sqrt{2\theta {({h}_{s}\left(1-2\theta \right)-\left(1-\theta \right)\left({c}_{o}-2{c}_{s}\right))}^{2}})\). Since the smaller root minus \({\underline{v}}^{Pr}=-\frac{\theta \left({h}_{s}\left(1-2\theta \right)-\left(1-\theta \right)\left({c}_{o}-2{c}_{s}\right)\right)\sqrt{2\theta {\left({h}_{s}\left(1-2\theta \right)-\left(1-\theta \right)\left({c}_{o}-2{c}_{s}\right)\right)}^{2}}}{2\left(1-\theta \right)\theta }<0\), we have \({\pi }^{Pr*}\le {\pi }^{Rr*}\) if \(v<{\widehat{v}}_{PRr}\), and \({\pi }^{Pr*}>{\pi }^{Rr*}\) otherwise, where \({\widehat{v}}_{PRr}=c+\frac{1}{2\left(1-\theta \right)\theta }(2\left({h}_{s}-\left({c}_{s}+{h}_{s}\right)\theta +\left({c}_{s}+{h}_{s}\right){\theta }^{2}\right)+\sqrt{2\theta {({h}_{s}\left(1-2\theta \right)-\left(1-\theta \right)\left({c}_{o}-2{c}_{s}\right))}^{2}})\).

In summary, when \(v\ge {\widehat{v}}_{PRr}\), the proactive strategy is optimal; otherwise, the reactive strategy is optimal.

Equilibrium outcomes and comparisons for extensions

See Tables 2, 3, and

Table 3 Equilibrium outcomes when consumers absorb ship** fees
Table 4 Equilibrium outcomes in cases of hassle cost differences

4.

The procedure of profit comparisons in extensions is similar to those of the main model. For brevity, we omit the detailed analyses. The final results are as follows.

2.1 Consumers absorb ship** fees of online returns

For \({c}_{o}\le 2{c}_{s}+f\), in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{PBf},{\widehat{v}}_{PRf})\), the proactive strategy is optimal; when \(\theta >{\widehat{\theta }}_{f1}\) and \({\widehat{v}}_{RBf}<v<{\widehat{v}}_{PRf}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RBf},{\widehat{v}}_{PBf})\), the benchmark strategy is optimal. For \({c}_{o}>2{c}_{s}+f\), in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{HBf},{\widehat{v}}_{HRf})\), the hybrid strategy is optimal; when \(\theta >{\widehat{\theta }}_{f2}\) and \({\widehat{v}}_{RBf}<v<{\widehat{v}}_{HRf}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RBf},{\widehat{v}}_{HBf})\), the benchmark strategy is optimal. The thresholds are:\({\widehat{v}}_{RBf}=c+\frac{({c}_{s}+{h}_{s})(2-\theta )-{c}_{o}+\sqrt{{({c}_{o}-{c}_{s}+{h}_{s}-2f)}^{2}(2-\theta )}}{\theta }\), \({\widehat{v}}_{PBf}=c+\frac{{c}_{o}\theta (1-\theta )-{h}_{s}(2-\theta )+(({c}_{o}-2f)(1-\theta )+{h}_{s})\sqrt{(2-\theta )\theta }}{2(1-\theta )\theta }\), \({\widehat{v}}_{PRf}=c+\frac{\left(\begin{array}{c}{h}_{s}\left(1-\theta +{\theta }^{2}\right)-{c}_{s}\theta \left(1-\theta \right)\\ +\sqrt{(2\left({c}_{o}-f\right)\left(f-{h}_{s}\right)+{{c}_{s}}^{2}{\left(1-\theta \right)}^{2}+2\left(3{h}_{s}-2f\right)\left({c}_{o}-f\right)\theta +\left({{h}_{s}}^{2}+4{h}_{s}f-2{f}^{2}+2{c}_{o}\left(f-2{h}_{s}\right)\right){\theta }^{2}-2{c}_{s}(1-\theta )(2f(1-\theta )+{h}_{s}(3\theta -2)))\theta }\end{array}\right)}{(1-\theta )\theta }\), \({\widehat{v}}_{HRf}=c+\frac{{h}_{s}\left(1-\theta +{\theta }^{2}\right)-{c}_{s}\theta \left(1-\theta \right)+({c}_{s}-{c}_{s}\theta +{h}_{s}\theta )\sqrt{\theta }}{(1-\theta )\theta }\), and

$${\widehat{v}}_{HBf}=c+\frac{\left(\begin{array}{c}{c}_{o}\theta \left(1-\theta \right)-{h}_{s}\left(2-\theta \right)\\ +\sqrt{(2-\theta )\theta ({{h}_{s}}^{2}-8{h}_{s}f+8{f}^{2}+{{c}_{o}}^{2}{\left(1-\theta \right)}^{2}+16\left({h}_{s}-f\right)f\theta +8f\left(f-{h}_{s}\right){\theta }^{2}-8{c}_{s}\left(1-\theta \right)\left({h}_{s}-\left(1-\theta \right)f-2{h}_{s}\theta \right)-2{c}_{o}(1-\theta )(4(1-\theta )f+{h}_{s}(4\theta -3)))}\end{array}\right)}{2(1-\theta )\theta }$$

In addition, \({\widehat{\theta }}_{f1}\) and \({\widehat{\theta }}_{f2}\) are the roots for \({\widehat{v}}_{RBf}={\widehat{v}}_{PBf}\) and \({\widehat{v}}_{RBf}={\widehat{v}}_{HBf}\), respectively.

2.2 Cost differences

For \({c}_{o}\le 2{c}_{s}\), in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{PBd},{\widehat{v}}_{PRd})\), the proactive strategy is optimal for the retailer; when \(\theta >{\widehat{\theta }}_{d1}\) and \({\widehat{v}}_{RBd}<v<{\widehat{v}}_{PRd}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RBd},{\widehat{v}}_{PBd})\), the benchmark strategy is optimal. For \({c}_{o}>2{c}_{s}\), in the common feasible domain, when \(v\ge {\text{max}}({\widehat{v}}_{HBd},{\widehat{v}}_{HRd})\), the hybrid strategy is optimal for the retailer; when \(\theta >{\widehat{\theta }}_{d2}\) and \({\widehat{v}}_{RBd}<v<{\widehat{v}}_{HRd}\), the reactive strategy is optimal; when \(v\le {\text{min}}({\widehat{v}}_{RBd},{\widehat{v}}_{HBd})\), the benchmark strategy is optimal. The thresholds are:\({\widehat{v}}_{RBd}=c+\frac{\left(2-\theta \right)\left({c}_{s}+{h}_{s}+{\alpha }_{s}\right)-{c}_{o}-{\alpha }_{o}+\sqrt{2-\theta }\left({c}_{o}-{c}_{s}+{h}_{s}-{\alpha }_{o}+{\alpha }_{s}\right)}{\theta }\), \({\widehat{v}}_{PBd}=c+\frac{\left(2-\theta \right){h}_{s}-\theta \left(1-\theta \right)({c}_{o}+{\alpha }_{o})+\sqrt{\theta (2-\theta )}\left(\left(1-\theta \right)({c}_{o}-{\alpha }_{o})+{h}_{s}\right)}{2(1-\theta )\theta }\), \({\widehat{v}}_{PRd}=c+\frac{\left(\begin{array}{c}\left(1-\theta +{\theta }^{2}\right){h}_{s}-\theta \left(1-\theta \right)\left({c}_{s}+{\alpha }_{s}\right)\\ +\sqrt{\theta ({{c}_{s}}^{2}{(1-\theta )}^{2}+2{c}_{o}(1-\theta )(({\alpha }_{o}-2{\alpha }_{s})(1-\theta )+{h}_{s}(2\theta -1))+{({\alpha }_{o}(1-\theta )-{h}_{s}\theta )}^{2}+2{c}_{s}(1-\theta )((3{\alpha }_{s}-2{\alpha }_{o})(1-\theta )+{h}_{s}(2-3\theta ))}\end{array}\right)}{(1-\theta )\theta }\), \({\widehat{v}}_{HBd}=c+\frac{\left(\begin{array}{c}\left(2-\theta \right){h}_{s}-\theta \left(1-\theta \right)\left({c}_{o}+{\alpha }_{o}\right)\\ +\sqrt{\theta (2-\theta )({({h}_{s}+{\alpha }_{o}(1-\theta ))}^{2}+{{c}_{o}}^{2}{(1-\theta )}^{2}-8{c}_{s}(1-\theta )({h}_{s}-({\alpha }_{o}-2{\alpha }_{s})(1-\theta )-2{h}_{s}\theta )+2{c}_{o}(1-\theta )((4{\alpha }_{s}-3{\alpha }_{o})(1-\theta )+{h}_{s}(3-4\theta )))}\end{array}\right)}{2(1-\theta )\theta }\), and \({\widehat{v}}_{HRd}=c+\frac{(1-\theta +{\theta }^{2}){h}_{s}-\theta (1-\theta )({c}_{s}+{\alpha }_{s})+\sqrt{\theta {(({c}_{s}-{\alpha }_{s})(1-\theta )+{h}_{s}\theta )}^{2}}}{(1-\theta )\theta }\).

In addition, \({\widehat{\theta }}_{d1}\) and \({\widehat{\theta }}_{d2}\) are the roots for \({\widehat{v}}_{RBd}={\widehat{v}}_{PBd}\) and \({\widehat{v}}_{RBd}={\widehat{v}}_{HBd}\), respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, P., Shi, R., Chen, H. et al. Reactive or proactive? An online retailer’s omnichannel strategy for managing consumer returns. Ann Oper Res (2024). https://doi.org/10.1007/s10479-024-05823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10479-024-05823-x

Keywords

Navigation