Log in

Quantitative pulsed CEST-MRI at a clinical 3T MRI system

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

The goal of this study was to quantify CEST related parameters such as chemical exchange rate and fractional concentration of exchanging protons at a clinical 3T scanner. For this purpose, two CEST quantification approaches—the AREX metric (for ‘apparent exchange dependent relaxation’), and the AREX-based Ω-plot method were used. In addition, two different pulsed RF irradiation schemes, using Gaussian-shaped and spin-lock pulses, were compared.

Materials and methods

Numerical simulations as well as MRI measurements in phantoms were performed. For simulations, the Bloch–McConnell equations were solved using a two-pool exchange model. MR experiments were performed on a clinical 3T MRI scanner using a cylindrical phantom filled with creatine solution at different pH values and different concentrations.

Results

The validity of the Ω-plot method and the AREX approach using spin-lock preparation for determination of the quantitative CEST parameters was demonstrated. Especially promising results were achieved for the Ω-plot method when the spin-lock preparation was employed.

Conclusion

Pulsed CEST at 3T could be used to quantify parameters such as exchange rate constants and concentrations of protons exchanging with free water. In the future this technique might be used to estimate the exchange rates and concentrations of biochemical substances in human tissues in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  CAS  PubMed  Google Scholar 

  2. van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 229:155–172

    Article  CAS  PubMed  Google Scholar 

  4. Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127:17572–17573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Müller-Lutz A, Khalil N, Schmitt B, Jellus V, Pentang G, Oeltzschner G, Antoch G, Lanzman RS, Wittsack HJ (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. Magn Reson Mater Phy 27(6):477–485

    Article  Google Scholar 

  6. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH map** with Iobitridol. J Am Chem Soc 136(41):14333–14336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu R, **ao G, Zhou IY, Ran C, Sun PZ (2015) Quantitative chemical exchange saturation transfer (qCEST) MRI–omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate. NMR Biomed 28(3):376–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim J, Wu Y, Guo Y, Zheng H, Sun PZ (2014) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging 10(3):163–178

    Article  Google Scholar 

  9. Woessner DE, Zhang S, Merritt ME, Sherry AD (2005) Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53:790–799

    Article  CAS  PubMed  Google Scholar 

  10. McMahon MT, Gilad AA, Zhou J, Sun PZ, Bulte JW, van Zijl PC (2006) Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): pH calibration for poly-l-lysine and a starburst dendrimer. Magn Reson Med 55(4):836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dixon WT, Ren J, Lubag AJ, Ratnakar J, Vinogradov E, Hancu I, Lenkinski RE, Sherry AD (2010) A concentration-independent method to measure exchange rates in PARACEST agents. Magn Reson Med 63(3):625–632

    Article  CAS  PubMed  Google Scholar 

  12. Sun PZ (2012) Simplified quantification of labile proton concentration weighted chemical exchange rate (kws) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI. Magn Reson Med 67(4):936–942

    Article  CAS  PubMed  Google Scholar 

  13. Sun PZ (2010) Simultaneous determination of labile proton concentration and exchange rate utilizing optimal RF power: radio frequency power (RFP) dependence of chemical exchange saturation transfer (CEST) MRI. J Magn Reson 202(2):155–161

    Article  CAS  PubMed  Google Scholar 

  14. Wu R, Liu CM, Liu PK, Sun PZ (2012) Improved measurement of labile proton concentration-weighted chemical exchange rate (kws) with experimental factor-compensated and T1-normalized quantitative chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol Imaging 7(4):384–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun PZ, Wang Y, Dai Z, **ao G, Wu R (2014) Quantitative chemical exchange saturation transfer (qCEST) MRI–RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate. Contrast Media Mol Imaging 9(4):268–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun PZ, Wang E, Cheung JS, Zhang X, Benner T, Sorensen AG (2011) Simulation and optimization of pulsed radio frequency (RF) irradiation scheme for chemical exchange saturation transfer (CEST) MRI—demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia. Magn Reson Med 66(4):1042–1048

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmitt B, Zaiss M, Zhou J, Bachert P (2011) Optimization of pulse train pre-saturation for CEST imaging in clinical scanners. Magn Reson Med 65:1620–1629

    Article  PubMed  Google Scholar 

  18. Sun PZ, Brenner T, Kumar A, Sorensen AG (2008) Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 60:834–841

    Article  PubMed  Google Scholar 

  19. Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1- corrected steady-state pulsed CEST-MRI–application to pH-weighted MRI of acute stroke. NMR Biomed 27(3):240–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meissner JE, Goerke S, Rerich E, Klika KD, Radbruch A, Ladd ME, Bachert P, Zaiss M (2015) Quantitative pulsed CEST-MRI using Ω-plots. NMR Biomed 28:1196–1208

    Article  CAS  PubMed  Google Scholar 

  21. Zaiss M, Bachert P (2013) Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange–modeling off-resonant spin-lock and chemical exchange saturation transfer. NMR Biomed 26(5):507–518

    Article  CAS  PubMed  Google Scholar 

  22. Roeloffs V, Meyer C, Bachert P, Zaiss M (2014) Towards quantification of pulsed spinlock and CEST at clinical MR scanners: an analytical interleaved saturation-relaxation (ISAR) approach. NMR Biomed 28:40–53

    PubMed  Google Scholar 

  23. ** T, Aution J, Obata T, Kim SG (2011) Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magn Reson Med 65:1448–1460

    Article  CAS  PubMed  Google Scholar 

  24. ** T, Kim SG (2014) Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton exchange rates. NMR Biomed 27(11):1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cobb JG, Li K, **e J, Gochberg DF, Gore JC (2014) Exchange-mediated contrast in CEST and spin-lock imaging. Magn Reson Imaging 32(1):28–40

    Article  PubMed  Google Scholar 

  26. Yuan J, Zhou J, Ahuja AT, Wang YX (2013) MR chemical exchange imaging with spin-lock technique (CESL): a theoretical analysis of Z-spectrum using a two-pool R 1ρ relaxation model beyond the fast-exchange limit. Phys Med Biol 57(24):8185–8200

    Article  Google Scholar 

  27. Murase K, Tanki N (2011) Numerical solutions to the time-dependent Bloch equations revisited. Magn Reson Imaging 29(1):126–131

    Article  PubMed  Google Scholar 

  28. Goerke S, Zaiss M, Bachert P (2014) Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro. NMR Biomed 27(5):507–518

    Article  CAS  PubMed  Google Scholar 

  29. Kim M, Gillen J, Landmann BA, Zhou J, van Zijl PC (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer experiments. Magn Reson Med 61(6):1441–1450

    Article  PubMed  PubMed Central  Google Scholar 

  30. Müller-Lutz A, Matuschke F, Schleich C, Wickrath F, Boos J, Schmitt B, Wittsack HJ (2016) Improvement of water saturation shift referencing by sequence and analysis optimization to enhance chemical exchange saturation transfer imaging. Magn Reson Imaging 34(6):771–778

    Article  PubMed  Google Scholar 

  31. Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 58(6):1207–1215

    Article  PubMed  Google Scholar 

  32. Randtke EA, Chen LQ, Corrales LR, Pagel MD (2014) The Hanes-Woolf linear QUESP method improves the measurements of fast chemical exchange rates with CEST MRI. Magn Reson Med 71(4):1603–1612

    Article  CAS  PubMed  Google Scholar 

  33. Zhou J, Wilson DA, Sun PZ, Klaus JA, van Zijl PC (2004) Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST and APT experiments. Magn Reson Med 51(5):945–952

    Article  PubMed  Google Scholar 

  34. Sun PZ, Wang E, Cheung JS (2012) Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI–correction of tissue relaxation and concomitant RF irradiation effects toward map** quantitative cerebral tissue pH. Neuroimage 60(1):1–6

    Article  CAS  PubMed  Google Scholar 

  35. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64

    Article  CAS  PubMed  Google Scholar 

  37. Jones CK, Huang A, Xu J, Edden RA, Schär M, Hua J, Oskolkov N, Zacà D, Zhou J, McMahon MT, Pillai JJ, van Zijl PC (2013) Nuclear overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124

    Article  PubMed  Google Scholar 

  38. Keupp J, Togao O, Zhou J, Suzuki Y, Yoshiura T (2012) Optimization of saturation pulse length in parallel transmission based amide proton transfer MRI for oncology applications. Proc Int Soc Magn Reson Med 20:4258

    Google Scholar 

  39. Togao O, Hiwatashi A, Keupp J, Yamashita K, Kikuchi K, Yoshiura T, Yoneyama M, Kruiskamp MJ, Sagiyama K, Takahashi M, Honda H (2016) Amide proton transfer imaging of diffuse gliomas: effect of saturation pulse length in parallel transmission-based technique. PLoS One 11(5):e0155925

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou Z, Bez M, Tawackoli W, Giaconi J, Sheyn D, de Mel S, Maya MM, Pressman BD, Gazit Z, Pelled G, Gazit D, Li D (2016) Quantitative chemical exchange saturation transfer MRI of intervertebral disc in a porcine model. Magn Reson Med 76(6):1677–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heo HY, Zhang Y, Leen DH, Jiang S, Zhao X, Zhou J (2016) Accelerating chemical exchange saturation transfer (CEST) MRI by combining compressed sensing and sensitivity encoding techniques. Magn Reson Med 77:779–786

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Zaiss (German Cancer Research Center, Heidelberg, Germany) for providing CEST MRI pulse sequence used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Stabinska: Protocol/project development, data management, data analysis. Cronenberg: Protocol/project development, data collection, data analysis. Wittsack: Protocol/project development. Lanzman: Protocol/project development. Müller-Lutz: Protocol/project development.

Corresponding author

Correspondence to Julia Stabinska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was supported by a Grant from the Forschungskommission of the Faculty of Medicine, Heinrich-Heine-University, Düsseldorf (Grant No: 13/2015).

Appendix 1

Appendix 1

See Figs. 6 and 7 and Table 2.

Fig. 6
figure 6

A simplified schematic CEST pulse sequence diagram with a series of a Gaussian-shaped RF saturation pulses and b off-resonant spin-lock saturation pulses. Each saturation block consists of n pulses of average amplitude B 1 and duration t p interleaved by delays t d . Between the saturation pulses spoiling gradients in all three gradient dimensions are applied. After RF saturation a 2-D single-shot gradient echo sequence (GRE) was used for CEST image data acquisition. Diagram was created based on [22, 28]

Fig. 7
figure 7

Z-spectrum and AREX curves obtained with B 1 = 0.5 µT and B 1 = 1.65 µT using pulsed SL (dashed blue lines) and Gaussian-shaped saturation pulses (solid green lines). For the pulsed SL saturation, AREX yields higher contrast at higher B 1 compared to saturation with trains of Gaussian-shaped RF pulses

Table 2 Numerical simulation parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stabinska, J., Cronenberg, T., Wittsack, HJ. et al. Quantitative pulsed CEST-MRI at a clinical 3T MRI system. Magn Reson Mater Phy 30, 505–516 (2017). https://doi.org/10.1007/s10334-017-0625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0625-0

Keywords

Navigation