Log in

Point positioning the geocenter through LEO GPS tracking and its application in geophysics

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We distinguish between geocenter location and geocenter motion for their different purposes: precise orbit determination (POD) and earth surface mass variation monitoring. We present a method to measure the geocenter location through GPS tracked low earth orbiters (LEO) POD. We propose two methods to apply these geocenter location estimates to earth surface mass variation study. 19 years of daily geocenter locations in IGS14 reference frame are estimated from the POD of GPS tracked LEOs. These estimates are applied to 296 globally distributed GPS ground stations measured in the same reference frame for surface mass variation inversion. The results show that such determined geocenter location reaches sub-millimeter precision in each component judged by RMS of the overlap** differences. The geocenter motion change measured using the 80-station GPS orbit and clock product shows similar annual variation to the degree-1 term of the surface mass variation spherical harmonics determined from the 296-station inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

LEO GPS tracking data used for this study are from GRACE and GRACE-FO missions https://podaac.jpl.nasa.gov/dataset, SWARM mission http://earth.esa.int/eogateway/missions/swarm/data, Sentinel-3 missions https://scihub.copernicus.eu/gnss/#/home, Jason-2 and -3 missions https://www.avl.class.noaa.gov/saa/products. The JPL GPS orbit and clock product are from https://sideshow.jpl.nasa.gov/pub/JPL_GPS_Products. The 60-day SLR solutions are from The University of Texas at Austin Center for Space Research (https://filedrop.csr.utexas.edu/pub/slr/geocenter/60_day_geocenter_constrained_heights_detrended.txt). The “OBP + GRACE” geocenter motion solution is from JPL’s GRACE Technical Note #13c (https://podaac.jpl.nasa.gov/gravity/grace-documentation#TechnicalNotes). The “Inverse” solution of Wu et al. 2020 is provided by the author and available upon request. The three time series of daily geocenter location from GRACE solution, GRACE-FO solution and the 7-LEO solution are available upon request. The 19-year combined monthly geocenter location time series, as well as the inversion solution of the degree-1 geocenter motion are also available upon request.

References

  • Abbondanza C, Chin TM, Gross RS, Heflin MB, Parker J, Soja BS, van Dam T, Wu X (2017) JTRF2014, the JPL Kalman filter, and smoother realization of the international terrestrial reference system. J Geophys Res Solid Earth 122:8474–8510. https://doi.org/10.1002/2017JB014360

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005 a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res. https://doi.org/10.1029/2007JB004949

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. https://doi.org/10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux L (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Collilieux X, Metivier L, Chanard K (2023) ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions. J Geod 97:47. https://doi.org/10.1007/s00190-023-01738-w

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010a) Single receiver phase ambiguity resolution with GPS data. J Geod 84:327–337. https://doi.org/10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Bertiger W, Desai SD, Dorsey A, Haines BJ, Harvey N, Kuang D, Sibthorpe A, Weiss JP (2010b) Sub-centimeter precision orbit determination with gps for ocean altimetry. Mar Geodesy 33(S1):363–378. https://doi.org/10.1080/01490419.2010.487800

    Article  Google Scholar 

  • Cheng MK (1999) Geocenter variations from analysis of TOPEX/POSEIDON SLR data. IERS analysis campaign to investigate motions of the geocenter, IERS technical note, vol 25. Observatoire De Paris, Paris, pp 39–44

    Google Scholar 

  • Cheng MK, Ries JC, Tapley BD (2013) Geocenter variations from analysis of SLR data, in reference frames for applications in geosciences. International association of geodesy symposia, vol 138. Springer, Berlin, pp 19–26

    Google Scholar 

  • Desai SD, Haines BJ, Kuang D (2019) Long wavelength time variable gravity recovered from GPS-based precise orbit determination of multiple low-earth orbiters, In: 2019 GRACE science team meeting, Pasadena, USA

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4):2200–2209

    Article  Google Scholar 

  • Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Mar Geodesy 27(1–2):299–318

    Article  Google Scholar 

  • Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the global positioning system. J Geophys Res Solid Earth. https://doi.org/10.1002/2015JB012225

    Article  Google Scholar 

  • Heflin M, Bertiger W, Blewitt G, Freedman A, Hust K, Lichten S, Lindqwister U, Vigue Y, Webb F, Yunck T, Zumberge J (1992) Global geodesy using GPS without fiducial sites. Geophys Res Lett 19(2):131–134

    Article  Google Scholar 

  • Jäggi A, Dahle C, Arnold D, Bock H, Meyer U, Beutler G, van den Ijssel J (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233

    Article  Google Scholar 

  • Kang Z, Tapley B, Chen J, Ries J, Bettadpur S (2009) Geocenter variations derived from GPS tracking of the GRACE satellites. J Geod 83:895–901

    Article  Google Scholar 

  • Kuang D, Schutz BE, Watkins MM (1996) On the structure of geometric positioning information in GPS measurements. J Geod 71:35–43

    Article  Google Scholar 

  • Kuang D, Bar-Sever Y, Haines B (2015) Analysis of orbital configurations for geocenter determination with GPS and low-earth orbiters. J Geod 89(5):471–481. https://doi.org/10.1007/s00190-015-0792-6

    Article  Google Scholar 

  • Kuang D, Bertiger WI, Desai SD, Haines BJ, Yuan DH (2019) Observed geocenter motion from precise orbit determination of GRACE satellites using GPS tracking and accelerometer data. J Geod 93(10):1835–1844. https://doi.org/10.1007/s00190-019-01283-5

    Article  Google Scholar 

  • Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI, Bettadpur SV, Byun SH, Dahle C, Dobslaw H, Fahnestock E, Harvey N, Kang Z, Kruizinga G, Loomis BD, McCullough C, Murböck M, Nagel P, Paik M, Pie N, Poole S, Strekalov D, Tamisiea ME, Wang F, Watkins MM, Wen HY, Wiese DN, Yuan DN (2020) Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys Res Lett 47:e2020GL088306. https://doi.org/10.1029/2020GL088306

    Article  Google Scholar 

  • Lavallee D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111:B05405

    Article  Google Scholar 

  • Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophyd Res Lett 17(5):651–654

    Article  Google Scholar 

  • Montenbruck O, Hackel S, Jäggi A (2018) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geodesy 92:711–726. https://doi.org/10.1007/s00190-017-1090-2

    Article  Google Scholar 

  • Pavlis EC (1999) Fortnightly resolution geocenter series: a combined analysis of LAGEOS 1 and 2 SLR data (1993–1996). IERS analysis campaign to investigate motions of the geocenter, IERS technical note, vol 25. Observatoire De Paris, Paris, pp 75–84

    Google Scholar 

  • Rebischung P, Altamimi Z, Springer T (2014) A colinearity diagnosis of the GNSS geocenter determination. J Geod 88(1):65–85. https://doi.org/10.1007/s00190-013-0669-5

    Article  Google Scholar 

  • Sun Y, Riva R, Ditmar P (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J Geophys Res Solid Earth 121:8352–8370. https://doi.org/10.1002/2016JB013073

    Article  Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410. https://doi.org/10.1029/2007JB005338

    Article  Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. https://doi.org/10.1029/2004GL019920

    Article  Google Scholar 

  • Vigue Y, Lichten SM, Blewitt G, Heflin MB, Malla RP (1992) Precise determination of earths center of mass using measurements from the global positioning system. Geophys Res Lett 19(14):1487–1490

    Article  Google Scholar 

  • Wahr J, Molenaar M (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229

    Article  Google Scholar 

  • Watkins MM, Eanes RJ (1997) Observations of tidally coherent diurnal and semidiurnal variations in the geocenter. Geophys Res Lett 24(17):2231–2234

    Article  Google Scholar 

  • Wu SC, Yunck TP, Thornton CL (1991) “Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dyn 14(1):24–30

    Article  Google Scholar 

  • Wu X, Argus DF, Heflin MB, Ivins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 29(24):2210. https://doi.org/10.1029/2002GL016324

    Article  Google Scholar 

  • Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. https://doi.org/10.1016/j.jog.2012.01.00

    Article  Google Scholar 

  • Wu X, Abbondanza C, Altamimi Z, Chin TM, Collilieux X, Gross RS, Heflin MB, Jiang Y, Parker JW (2015) KALREF—a Kalman filter and time series approach to the international terrestrial reference frame realization. J Geophys Res Solid Earth 120:3775–3802. https://doi.org/10.1002/2014JB011622

    Article  Google Scholar 

  • Wu X, Kusche J, Landerer FW (2017) A new unified approach to determine geocenter motion using space geodetic and GRACE gravity data. Geophys J Int 209:1398–1402. https://doi.org/10.1093/gji/ggx086

    Article  Google Scholar 

  • Wu X, Haines BJ, Heflin MB, Landerer FW (2020) Improved global nonlinear surface mass variation estimates from geodetic displacements and reconciliation with GRACE data. J Geophys Res Solid Earth 125:e201JB9018355. https://doi.org/10.1029/2019JB018355

    Article  Google Scholar 

  • Zielinski JB (1989) GPS baseline error caused by the orbit uncertainty. Manuscri Geod 14:117–124

    Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(5005–5017):96JB03860

    Google Scholar 

Download references

Acknowledgements

The work described in this paper is carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). LEO GPS tracking data are from missions by European Space Agency (ESA), U.S. National Oceanic and Atmospheric Administration (NOAA), and NASA. The constructive suggestions from two anonymous reviewers are greatly appreciated.

Funding

Funding was provided by National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

DK formulated the algorithm and processed the data; SD selected the LEO configurations and prepared the data; BH verified the POD strategy and solutions; XW developed and carried out the application. All authors discussed the results together and reviewed the manuscript.

Corresponding author

Correspondence to Da Kuang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, D., Desai, S.D., Haines, B.J. et al. Point positioning the geocenter through LEO GPS tracking and its application in geophysics. GPS Solut 28, 137 (2024). https://doi.org/10.1007/s10291-024-01680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-024-01680-0

Keywords

Navigation