Log in

Role of IGF-1R in epithelial–mesenchymal transdifferentiation of human peritoneal mesothelial cells

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Peritoneal fibrosis (PF) is caused by epithelial-mesenchymal transdifferentiation (EMT) in the peritoneum under high glucose (HG) conditions. The study aimed to explored the role of Insulin-like growth factor 1 receptor (IGF-1R) in the regulation of EMT in human peritoneal mesothelial cells (HPMCs).

Methods

We used HG peritoneal dialysis fluid (PDF) to induce in vivo PF in mice, and treated HPMCs with HG in vitro to stimulate EMT.

Results

In the mice, the higher the glucose concentration in the dialysate, the more obvious the peritoneal tissue thickening and the more that collagen was deposited. The in vitro study indicated that the expression of IGF-1R, α-SMA, vimentin was upregulated, while the expression of occludin, ZO-1, and E-cadherin was downregulated in HPMCs under HG and IGF-1R overexpression conditions. Conversely, the expression of IGF-1R, α-SMA, and vimentin was downregulated, while the expression of occludin, ZO-1, and E-cadherin was upregulated in IGF-1R-underexpressed HPMCs under HG conditions. The cell migration abilities were increased, while the cell adhesion abilities were reduced in HPMCs under HG and IGF-1R overexpression conditions. In contrast, cell migration abilities were reduced, while cell adhesion abilities were increased in IGF-1Runderexpressed HPMCs under HG conditions.

Conclusions

Targeting at IGF-1R may provide novel insights into the prevention and treatment of PF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The current state of peritoneal dialysis. J Am Soc Nephrol. 2016;27:3238–52.

    Article  CAS  Google Scholar 

  2. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    Article  Google Scholar 

  3. Weber CE, Li NY, Wai PY, Kuo PC. Epithelial-mesenchymal transition, tgf-beta, and osteopontin in wound healing and tissue remodeling after injury. J Burn Care Res. 2012;33:311–8.

    Article  Google Scholar 

  4. Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, Del PG, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18:2004–13.

    Article  CAS  Google Scholar 

  5. Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  Google Scholar 

  6. Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429–37.

    Article  CAS  Google Scholar 

  7. Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, et al. Hgf and bmp-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol. 2009;20:567–81.

    Article  CAS  Google Scholar 

  8. Delafontaine P. Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovasc Res. 1995;30:825–34.

    Article  CAS  Google Scholar 

  9. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev. 1995;16:143–63.

    Article  CAS  Google Scholar 

  10. van der Wal BC, Hofland LJ, Marquet RL, van Koetsveld PM, et al. Paracrine interactions between mesothelial and colon-carcinoma cells in a rat model. Int J Cancer. 1997;73:885–90.

    Article  Google Scholar 

  11. Delafontaine P, Song Y-H, Expression YL. Regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24:435–44.

    Article  CAS  Google Scholar 

  12. Chu PC, Lin PC, Wu HY, et al. Mutant KRAS promotes liver metastasis of colorectal cancer, in part, by upregulating the MEK-Sp1-DNMT1-miR-137-YB-1-IGF-IR signaling pathway. Oncogene. 2018;37(25):3440–55.

    Article  CAS  Google Scholar 

  13. Numata K, Oshima T, Sakamaki K, et al. Clinical significance of IGF1R gene expression in patients with stage ii/iii gastric cancer who receive curative surgery and adjuvant chemotherapy with s-1. J Cancer Res Clin Oncol. 2016;142:415–22.

    Article  CAS  Google Scholar 

  14. Su C, Wang W, Wang C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol Lett. 2018;15:7000–6.

    PubMed  PubMed Central  Google Scholar 

  15. Robertson DM, Zhu M, Wu YC. Cellular distribution of the IGF-1R in corneal epithelial cells. Exp Eye Res. 2012;94:179–86.

    Article  CAS  Google Scholar 

  16. Cox OT, O’Shea S, Tresse E, Bustamante-Garrido M, et al. IGF-1 receptor and adhesion signaling: an important axis in determining cancer cell phenotype and therapy resistance. Front Endocrinol (Lausanne). 2015;3(6):106.

    Google Scholar 

  17. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.

    Article  CAS  Google Scholar 

  18. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43.

    Article  CAS  Google Scholar 

  19. Liu J, Jiang C-M, Feng Y, Zhu W, et al. Rapamycin inhibits peritoneal fibrosis by modifying lipid homeostasis in the peritoneum. Am J Transl Res. 2019;11(3):1473–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hung K-Y, Huang J-W, Chiang C-K, Tsai T-J. Preservation of peritoneal morphology and function by pentoxifyllinein a rat model of peritoneal dialysis: molecular studies. Nephrol Dial Transpl. 2008;23:3831–40.

    Article  CAS  Google Scholar 

  21. Ishibashi Y, Sugimoto T, Ichikawa Y, et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit Dial Int. 2002;22(1):11–21.

    Article  Google Scholar 

  22. Pollock C. Pathogenesis of peritoneal sclerosis. Int J Artif Org. 2005;28(2):90–6.

    Article  CAS  Google Scholar 

  23. Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Peritoneal Dial Int J Int Soc Peritoneal Dial. 2015;35:14–25.

    Article  CAS  Google Scholar 

  24. Shin HS, Ryu ES, Oh ES, Kang DH. Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Lab Investig. 2015;95:1157–73.

    Article  CAS  Google Scholar 

  25. Zheng Z, Ye R, Yu X, et al. Peritoneal dialysis solutions disturb the balance of apoptosis and proliferation of peritoneal cells in chronic dialysis model. Adv Perit Dial. 2001;17:53–7.

    CAS  PubMed  Google Scholar 

  26. Tulchinsky E, Demidov O, Kriajevska M, Barlev NA, Imyanitov E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):29–39.

    Article  CAS  Google Scholar 

  27. Baxter RC. The insulin-like growth factors and their binding proteins. Comp Biochem Physiol B. 1988;91(2):229–35.

    Article  CAS  Google Scholar 

  28. Malaguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V, et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab. 2011;96:766–74.

    Article  CAS  Google Scholar 

  29. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.

    Article  Google Scholar 

  30. Kim IG, Kim SY, Choi SI, Lee JH, Kim KC, Cho EW. Fibulin-3-mediated inhibition of epithelial-to-mesenchymal transition and self-renewal of ALDH+lung cancer stem cells through IGF-1R signaling. Oncogene. 2014;33:3908–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Project of Nan**g Medical Science and Technology Development (YKK19057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Feng or Chunming Jiang.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, Y., Wan, C., Zhang, Q. et al. Role of IGF-1R in epithelial–mesenchymal transdifferentiation of human peritoneal mesothelial cells. Clin Exp Nephrol 26, 630–639 (2022). https://doi.org/10.1007/s10157-022-02209-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02209-w

Keywords

Navigation