Log in

Corrugated Graphene Paper Reinforced Silicone Resin Composite for Efficient Interface Thermal Management

  • Research Article
  • Special Issue: Functional Polymer Materials
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the rapid development of high-power-density electronic devices, interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products. Therefore, there is an urgent demand for advanced thermal interface materials (TIMs) with high cross-plane thermal conductivity and excellent compressibility to withstand increasingly complex operating conditions. To achieve this aim, a promising strategy involves vertically arranging highly thermoconductive graphene on polymers. However, with the currently available methods, achieving a balance between low interfacial thermal resistance, bidirectional high thermal conductivity, and large-scale production is challenging. Herein, we prepared a graphene framework with continuous filler structures in in-plane and cross-plane directions by bonding corrugated graphene to planar graphene paper. The interface interaction between the graphene paper framework and polymer matrix was enhanced via surface functionalization to reduce the interface thermal resistance. The resulting three-dimensional thermal framework endows the polymer composite material with a cross-plane thermal conductivity of 14.4 W·m−1·K−1 and in-plane thermal conductivity of 130 W·m−1·K−1 when the thermal filler loading is 10.1 wt%, with a thermal conductivity enhancement per 1 wt% filler loading of 831%, outperforming various graphene structures as fillers. Given its high thermal conductivity, low contact thermal resistance, and low compressive modulus, the developed highly thermoconductive composite material demonstrates superior performance in TIM testing compared with TFLEX-700, an advanced commercial TIM, effectively solving the interfacial heat transfer issues in electronic systems. This novel filler structure framework also provides a solution for achieving a balance between efficient thermal management and ease of processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The authors’ contact information: qmm@tju.edu.cn (M.M.Q.), weifeng@tju.edu.cn (W.F.).

References

  1. Zhang, Q.; Lv, Y.; Wang, Y.; Yu, S.; Li, C.; Ma, R.; Chen, Y. Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 2022, 13, 4874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu, Z.; Li, C.; Songfeng, E.; **e, L.; Geng, R.; Lin, C.-T.; Li, L.; Yao, Y. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Compos. Sci. Technol. 2019, 170, 93–100.

    Article  CAS  Google Scholar 

  3. Peng, L.; Yu, H.; Chen, C.; He, Q.; Zhang, H.; Zhao, F.; Qin, M.; Feng, Y.; Feng, W. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 2023, 2205962.

  4. Yue, J.; Feng, Y.; Qin, M.; Feng, W. Carbon-based materials with combined functions of thermal management and electromagnetic protection: preparation, mechanisms, properties, and applications. Nano Res. 2024, 17, 883–903.

    Article  CAS  Google Scholar 

  5. Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part Appl. Sci. Manuf. 2017, 98, 25–31.

    Article  CAS  Google Scholar 

  6. Xu, X.; Chen, J.; Zhou, J.; Li, B. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

    Article  Google Scholar 

  7. Yu, C.; Gong, W.; Tian, W.; Zhang, Q.; Xu, Y.; Lin, Z.; Hu, M.; Fan, X.; Yao, Y. Ho-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W m−1 K−1. Compos. Sci. Technol. 2018, 160, 199–207.

    Article  CAS  Google Scholar 

  8. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J.; Shi, G.; Jiang, C.; Ju, S.; Jiang, D. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small 2015, 11, 6197–6204.

    Article  CAS  PubMed  Google Scholar 

  10. Kong, Q.; Liu, Z.; Gao, J.; Chen, C.; Zhang, Q.; Zhou, G.; Tao, Z.; Zhang, X.; Wang, M.; Li, F.; Cai, R. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader. Adv. Funct. Mater. 2014, 24, 4222–4228.

    Article  CAS  Google Scholar 

  11. Ying, J.; Tan, X.; Lv, L.; Wang, X.; Gao, J.; Yan, Q.; Ma, H.; Nishimura, K.; Li, H.; Yu, J.; Liu, T.-H.; **ang, R.; Sun, R.; Jiang, N.; Wong, C.; Maruyama, S.; Lin, C. T.; Dai, W. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

    Article  CAS  PubMed  Google Scholar 

  12. Song, S. H.; Park, K. H.; Kim, B. H.; Choi, Y. W.; Jun, G. H.; Lee, D. J.; Kong, B. S.; Paik, K. W.; Jeon, S. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 2013, 25, 732–737.

    Article  CAS  PubMed  Google Scholar 

  13. Shtein, M.; Nadiv, R.; Buzaglo, M.; Kahil, K.; Regev, O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem. Mater. 2015, 27, 2100–2106.

    Article  CAS  Google Scholar 

  14. Wang, F.; Zeng, X.; Yao, Y.; Sun, R.; Xu, J.; Wong, C. P. Sliver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity. Sci. Rep. 2016, 6, 19394.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma, J.; Shang, T.; Ren, L.; Yao, Y.; Zhang, T.; **e, J.; Zhang, B.; Zeng, X.; Sun, R.; Xu, J. B.; Wong, C. P. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550.

    Article  CAS  Google Scholar 

  16. Hou, H.; Dai, W.; Yan, Q.; Lv, L.; Alam, F. E.; Yang, M.; Yao, Y.; Zeng, X.; Xu, J.-B.; Yu, J.; Jiang, N.; Lin, C. T. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J. Mater. Chem. A 2018, 6, 12091–12097.

    Article  CAS  Google Scholar 

  17. Yang, J.; Zhang, E.; Li, X.; Zhang, Y.; Qu, J.; Yu, Z. Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 2016, 98, 50–57.

    Article  CAS  Google Scholar 

  18. Qin, M.; Xu, Y.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.

    Article  Google Scholar 

  19. Ji, H.; Sellan, D. P.; Pettes, M. T.; Kong, X.; Ji, J.; Shi, L.; Ruoff, R. S. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 2014, 7, 1185–1192.

    Article  CAS  Google Scholar 

  20. Yang, J.; Li, X.; Han, S.; Yang, R.; Min, P.; Yu, Z. Z. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 2018, 6, 5880–5886.

    Article  CAS  Google Scholar 

  21. He, Q.; Qin, M.; Zhang, H.; Yue, J.; Peng, L.; Liu, G.; Feng, Y.; Feng, W. Patterned liquid metal embedded in brush-shaped polymers for dynamic thermal management. Mater. Horiz. 2023, 2, 531–544.

    Google Scholar 

  22. Gao, W.; Wang, M.; Bai, H. A review of multifunctional nacremimetic materials based on bidirectional freeze casting. J. Mech. Behav. Biomed. Mater. 2020, 109, 103820.

    Article  CAS  PubMed  Google Scholar 

  23. Min, P.; Liu, J.; Li, X.; An, F.; Liu, P.; Shen, Y.; Koratkar, N.; Yu, Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 2018, 28, 1805365.

    Article  Google Scholar 

  24. Li, J.; Zhang, Y.; Liang, T.; Bai, X.; Pang, Y.; Zeng, X.; Hu, Q.; Tu, W.; Ye, Z.; Du, G.; Sun, R.; Zeng, X. Thermal interface materials with both high through-plane thermal conductivity and excellent elastic compliance. Chem. Mater. 2021, 33, 8926–8937.

    Article  CAS  Google Scholar 

  25. Dai, W.; Ma, T.; Yan, Q.; Gao, J.; Tan, X.; Lv, L.; Hou, H.; Wei, Q.; Yu, J.; Wu, J.; Yao, Y.; Du, S.; Sun, R.; Jiang, N.; Wang, Y.; Kong, J.; Wong, C.; Maruyama, S.; Lin, C. T. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano 2019, 13, 11561–11571.

    Article  CAS  PubMed  Google Scholar 

  26. Tang, L.; Ruan, K.; Liu, X.; Tang, Y.; Zhang, Y.; Gu, J. Flexible and robust functionalized boron nitride/poly(p-phenylene benzobisoxazole) nanocomposite paper with high thermal conductivity and outstanding electrical insulation. Nano-Micro Lett. 2024, 16, 38.

    Article  CAS  Google Scholar 

  27. Zhang, Y.; Choi, J. R.; Park, S. J. Enhancing the heat and load transfer efficiency by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal management applications. Polymer 2018, 143, 1–9.

    Article  Google Scholar 

  28. Chu, K.; Wang, J.; Liu, Y.; Geng, Z. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites. Carbon 2018, 140, 112–123.

    Article  CAS  Google Scholar 

  29. Hu, P.; Madsen, J.; Skov, A. L. One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materials. Nat. Commun. 2022, 13, 370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

    Article  Google Scholar 

  31. Gao, X.; Zheng, L.; Luo, F.; Qian, J.; Wang, J.; Yan, M.; Wang, W.; Wu, Q.; Tang, J.; Cao, Y.; Tan, C.; Tang, J.; Zhu, M.; Wang, Y.; Li, Y.; Sun, L.; Gao, G.; Yin, J.; Lin, L.; Liu, Z.; Qin, S.; Peng, H. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation. Nat. Commun. 2022, 13, 5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srinivasan, N. R.; Shankar, P. A.; Bandyopadhyaya, R. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon 2013, 57, 1–10.

    Article  CAS  Google Scholar 

  33. Kang, S.; He, M.; Chen, M.; Wang, J.; Zheng, L.; Chang, X.; Duan, H.; Sun, D.; Dong, M.; Cui, L. Ultrafast plasma immersion strategy for rational modulation of oxygen-containing and amino groups in graphitic carbon nitride. Carbon 2020, 159, 51–64.

    Article  CAS  Google Scholar 

  34. Han, X.; Gao, J.; Chen, T.; Zhao, Y. Interfacial interaction and steric repulsion in polymer-assisted liquid exfoliation to produce high-quality graphene. Chem. Pap. 2020, 74, 757–765.

    Article  CAS  Google Scholar 

  35. Lin, S. B.; Durfee, L. D.; Ekeland, R. A.; McVie, J.; Schalau, G. K. Recent advances in silicone pressure-sensitive adhesives. J. Adhes. Sci. Technol. 2007, 21, 605–623.

    Article  CAS  Google Scholar 

  36. Witte, P. T.; Boland, S.; Kirby, F.; van Maanen, R.; Bleeker, B. F.; de Winter, D. A. M.; Post, J. A.; Geus, J. W.; Berben, P. H. NanoSelect Pd catalysts: what causes the high selectivity of these supported colloidal catalysts in alkyne semi-hydrogenation. ChemCatChem. 2013, 5, 582–587.

    Article  CAS  Google Scholar 

  37. Wang, B.; Ma, H. W.; Shen, K. H.; Jun, D.; Li, Y. Synthesis and characterization of in-chain silyl-hydride functional SBR and self-crosslinking elastomer. Chin. Chem. Lett. 2012, 23, 1419–1422.

    Article  Google Scholar 

  38. Ni, Y.; Yang, D.; Wei, Q.; Yu, L.; Ai, J.; Zhang, L. Plasticizer-induced enhanced electromechanical performance of natural rubber dielectric elastomer composites. Compos. Sci. Technol. 2020, 195, 108202.

    Article  CAS  Google Scholar 

  39. Liu, J.; Fang, Z.; An, J.; Bao, C. Effect of the cross-linking of polyorganosiloxane on highly thermally conductive silicone rubber’s mechanical, dielectric, and thermally conductive properties and thermal reliability. Compos. Commun. 2024, 45, 101781.

    Article  Google Scholar 

  40. Zhong, X.; He, M.; Zhang, C.; Guo, Y.; Hu, J.; Gu, J. Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 2024, 2313544.

  41. Yu, H.; Chen, C.; Sun, J.; Zhang, H.; Feng, Y.; Qin, M.; Feng, W. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 2022, 14, 135.

    Article  CAS  Google Scholar 

  42. Gong, J.; Tan, X.; Yuan, Q.; Liu, Z.; Ying, J.; Lv, L.; Yan, Q.; Chu, W.; Xue, C.; Yu, J.; Nishimura, K.; Jiang, N.; Lin, C.; Dai, W. A spiral graphene framework containing highly ordered graphene microtubes for polymer composites with superior through-plane thermal conductivity. Chin. J. Chem. 2022, 40, 329–336.

    Article  CAS  Google Scholar 

  43. Yin, W.; Qin, M.; Yu, H.; Sun, J.; Feng, W. Hyperelastic graphene aerogels reinforced by in-suit welding polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing. Adv. Fiber Mater. 2023, 5, 1037–1049.

    Article  CAS  Google Scholar 

  44. Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 2024.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52130303, 52327802 and 52173078) and National Key R&D Program of China (No. 2022YFB3805702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng-Meng Qin or Wei Feng.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2024_3159_MOESM1_ESM.pdf

Electronic Supplementary Information: Corrugated Graphene Paper Reinforced Silicone Resin Composite for Efficient Interface Thermal Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BW., Zhang, H., He, QX. et al. Corrugated Graphene Paper Reinforced Silicone Resin Composite for Efficient Interface Thermal Management. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3159-8

Keywords

Navigation