Log in

Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The proliferation of high-power, highly informationized, and highly integrated electronic devices and weapons equipment has given rise to increasingly conspicuous issues about electromagnetic (EM) pollution and thermal accumulation. These issues, in turn, impose constraints on the performance of such equipment and jeopardize personnel safety. Carbon materials, owing to their diverse and modifiable structures, offer adjustable thermal and electric conductivity, rendering them highly promising for applications in fields such as thermal management and EM protection which have garnered extensive research and review. The pursuit of integrated device and equipment development has elevated the demand for multifunctional materials, prompting significant research into carbon-based composite materials that include both thermal management and EM protection functionalities. Notably, there are no relevant reviews on this topic at present. Consequently, this work consolidates research findings from recent years on carbon matrix composites exhibiting dual attributes of thermal management and EM protection. These attributes include thermally conductive electromagnetic interference (EMI) shielding materials, thermally insulating EMI shielding materials, thermally conductive EM wave (EMW) absorbing materials, and thermally insulating EMW absorbing materials. The paper elucidates the fundamental principles underpinning thermal conduction, thermal insulation, EMW absorbing, and EMI shielding. Additionally, it engages in discussions surrounding areas of contention, design strategies, and the functional properties of various material designs. Ultimately, the paper concludes by presenting the challenges encountered and potential research strategies about composites endowed with both thermal management and EM protection functionalities, while also envisaging the development of novel multifunctional EM protection materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. Y.; Sun, W. J.; Dai, K.; Yan, D. X.; Li, Z. M. Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Compos. Sci. Technol. 2021, 212, 108848.

    Article  CAS  Google Scholar 

  2. Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

    Article  CAS  PubMed  Google Scholar 

  3. Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

    Article  ADS  Google Scholar 

  4. Duan, H. J.; He, P. Y.; Zhu, H. X.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q. Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. Part B. Eng. 2021, 212, 108690.

    Article  CAS  Google Scholar 

  5. Yu, Z.; Dai, T. W.; Yuan, S. W.; Zou, H. W.; Liu, P. B. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 30990–31001.

    Article  CAS  PubMed  Google Scholar 

  6. Li, S. S.; Tang, X. W.; Zhang, Y. W.; Lan, Q. Q.; Hu, Z. W.; Li, L.; Zhang, N.; Ma, P. M.; Dong, W. F.; Tjiu, W. et al. Corrosion-resistant graphene-based magnetic composite foams for efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2022, 14, 8297–8310.

    Article  CAS  PubMed  Google Scholar 

  7. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; **ang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  PubMed  Google Scholar 

  8. Ye, Z. W.; Wang, K. J.; Li, X. Q.; Yang, J. J. Preparation and characterization of ferrite/carbon aerogel composites for electromagnetic wave absorbing materials. J. Alloys Compd. 2022, 893, 162396.

    Article  CAS  Google Scholar 

  9. Ma, Z. L.; **ang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding, and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    Article  CAS  Google Scholar 

  10. Jia, L. C.; Zhang, G. Q.; Xu, L.; Sun, W. J.; Zhong, G. J.; Lei, J.; Yan, D. X.; Li, Z. M. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 1680–1688.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. L.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Recent advances of MXenes-based optical functional materials. Advanced Photonics Res., in press, https://doi.org/10.1002/adpr.202300224.

  12. Cai, Y.; Yu, H. T.; Chen, C.; Feng, Y. Y.; Qin, M. M.; Feng, W. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon 2022, 196, 902–912.

    Article  CAS  Google Scholar 

  13. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

    Article  CAS  PubMed  Google Scholar 

  14. Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

    Article  ADS  CAS  Google Scholar 

  15. Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

    Article  ADS  CAS  Google Scholar 

  16. Zhang, H.; He, Q. X.; Yu, H. T.; Qin, M. M.; Feng, Y. Y.; Feng, W. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 2023, 33, 2211985.

    Article  CAS  Google Scholar 

  17. Kashfipour, M. A.; Dent, R. S.; Mehra N.; Yang, X. T.; Gu, J. W.; Zhu, J. H. Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. Compos. Sci. Technol. 2019, 182, 107715.

    Article  CAS  Google Scholar 

  18. Mehra, N.; Li, Y. F.; Yang, X. T.; Li, J.; Kashfipour, M. A.; Gu, J. W.; Zhu, J. H. Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Compos. B: Eng. 2019, 166, 509–515.

    Article  CAS  Google Scholar 

  19. Peng, L. Q.; Yu, H. T.; Chen, C.; He, Q. X.; Zhang, H.; Zhao, F. L.; Qin, M. M.; Feng, Y. Y.; Feng, W. Tailoring dense, orientation-tunable, and interleavedly structured carbon-based heat dissipation plates. Adv. Sci. 2023, 10, 2205962.

    Article  CAS  Google Scholar 

  20. Huang, X. G.; Yu, G. Y.; Zhang, Y. K.; Zhang, M. J.; Shao, G. F. Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131894.

    Article  CAS  Google Scholar 

  21. Li, L. H.; Li, M. H.; Zhang, Z. H.; Qin, Y.; Shui, X. X.; **a, J. C.; **ong, S. Y.; Wang, B.; Zhang, Z. B.; Wei, X. Z. et al. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure. J. Mater. Chem. A 2022, 10, 9922–9931.

    Article  CAS  Google Scholar 

  22. Zhang, R. H.; Shi, X. T.; Tang, L.; Liu, Z.; Zhang, J. L.; Guo, Y. Q.; Gu, J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chin. J. Polym. Sci. 2020, 38, 730–739.

    Article  CAS  Google Scholar 

  23. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  24. Zhao, J.; Gu, Z.; Zhang, Q. G. Stacking MoS2 flowrr-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res., in press, https://doi.org/10.1007/s12274-023-6090-3.

  25. Lou, Z. C.; Wang, Q. Y.; Kara, U. I.; Mamtani, R. S.; Zhou, X. D.; Bian, H. Y.; Yang, Z. H.; Li, Y. J.; Lv, H. L.; Adera, S. et al. Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 2022, 14, 11.

    Article  ADS  CAS  Google Scholar 

  26. Cheng, Z.; Wang, R. F.; Cao, Y. S.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 2022, 32, 2205160.

    Article  CAS  Google Scholar 

  27. Yin, W. D.; Qin, M. M.; Yu, H. T.; Sun, J. X.; Feng, W. Hyperelastic graphene aerogels reinforced by in-uuit weldigg polyimide nano fiber with leaf skeleton structure and adjustable thermal conductivity for morphology and temperature sensing. Adv. Fiber Mater. 2023, 5, 1037–1049.

    Article  CAS  Google Scholar 

  28. Kim, S. H.; Lee, S. Y.; Zhang, Y. L.; Park, S. J.; Gu, J. W. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci., in press, https://doi.org/10.1002/advs.202303104.

  29. Kang, S.; Qiao, S. Y.; Cao, Y. T.; Hu, Z. M.; Yu, J. R.; Wang, Y. Compression strain-dependent tubular carbon nanofibers/graphene aerogel absorber with ultrabroad absorption band. Chem. Eng. J. 2022, 433, 133619.

    Article  CAS  Google Scholar 

  30. Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Elcctrif-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed. 2023, 62, e202309010.

    Article  CAS  Google Scholar 

  31. Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; **a, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

    Article  ADS  CAS  Google Scholar 

  32. Wang, Y. Y.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 2021, 176, 118–125.

    Article  CAS  Google Scholar 

  33. Sheng, A.; Yang, Y. Q.; Yan, D. X.; Dai, K.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Self- assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon 2020, 167, 530–540.

    Article  CAS  Google Scholar 

  34. Miao, B. J.; Cao, Y. G.; Zhu, Q. S.; Nawaz, M. A.; Ordiozola, J. A.; Reina, T. R.; Bai, Z. M.; Ren, J. N.; Wei, F. C. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv. Compos. Hybrid Mater. 2023, 6, 61.

    Article  CAS  Google Scholar 

  35. Chen, H. H.; Huang, Z. Y.; Huang, Y.; Zhang, Y.; Ge, Z.; Qin, B.; Liu, Z. F.; Shi, Q.; **ao, P. S.; Yang, Y. et al. Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 2017, 124, 506–514.

    Article  CAS  Google Scholar 

  36. Li, B. B.; Mao, B. X.; He, T.; Huang, H. Q.; Wang, X. B. Preparation and microwave absorption properties of double-layer hollow reticulated SiC foam. ACS Appl. Electron. Mater. 2019, 1, 2140–2149.

    Article  CAS  Google Scholar 

  37. Yu, M.; Liang, C. Y.; Liu, M. M.; Liu, X. L.; Yuan, K. P.; Cao, H.; Che, R. C. Yolk-shell Fe3O4@ZrO2 prepared by a tunable polymer surfactant assisted sol-gel method for high temperature stable microwave absorption. J. Mater. Chem. C 2014, 2, 7275–7283.

    Article  CAS  Google Scholar 

  38. Wu, G. L.; Jia, Z. R.; Zhou, X. F.; Nie, G. Z.; Lv, H. L. Interlayer controllable of hierarchical MWCNTs@C@FexOy cross-linked composite with wideband electromagnetic absorption performance. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105687.

    Article  CAS  Google Scholar 

  39. Sledzinska, M.; Quey, R.; Mortazavi, B.; Graczykowski, B.; Placidi, M.; Reig, D. S.; Navarro-Urrios, D.; Alzina, F.; Colombo, L.; Roche, S. et al. Record low thermal conductivity of polycrystalline MoS2 films: Tuning the thermal conductivity by grain orientation. ACS Appl. Mater. Interfaces 2017, 9, 37905–37911.

    Article  CAS  PubMed  Google Scholar 

  40. Ruan, K. P.; Gu, J. W. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 2022, 55, 4134–4145.

    Article  ADS  CAS  Google Scholar 

  41. Ruan, K. P.; Zhong, X.; Shi, X. T.; Dang, J. J.; Gu, J. W. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review. Mater. Today Phys. 2021, 20, 100456.

    Article  CAS  Google Scholar 

  42. Huang, X. Y.; Zhi, C. Y.; Lin, Y.; Bao, H.; Wu, G. N.; Jiang, P. K.; Mai, Y. W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 2020, 142, 100577.

    Article  Google Scholar 

  43. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  ADS  CAS  Google Scholar 

  44. Wang, H.; Li, S. N.; Liu, M. Y.; Li, J. H.; Zhou, X. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 2021, 306, 2100032.

    Article  CAS  Google Scholar 

  45. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    Article  CAS  Google Scholar 

  46. Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 2020, 142, 100580.

    Article  Google Scholar 

  47. Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull. 2023, 68, 1938–1953.

    Article  CAS  Google Scholar 

  48. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  49. Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

    Article  CAS  Google Scholar 

  50. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  ADS  CAS  Google Scholar 

  51. Li, L.; Yuan, X.; Zhai, H. X.; Zhang, Y.; Ma, L. L.; Wei, Q. Y.; Xu, Y.; Wang, G. Z. Flexible and ultrathin graphene/aramid nanofiber carbonizing films with nacre-like structures for heat-conducting electromagnetic wave shielding/absorption. ACS Appl. Mater. Interfaces 2023, 15, 15872–15883.

    Article  CAS  PubMed  Google Scholar 

  52. Zong, Z.; Ren, P. G.; Guo, Z. Z.; Wang, J.; Chen, Z. Y.; **, Y. L.; Ren, F. Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. J. Colloid Interface Sci. 2022, 619, 96–105.

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Chen, Q. G.; Huang, L.; Wang, X. H.; Yuan, Y. Transparent and flexible composite films with excellent electromagnetic interference shielding and thermal insulating performance. ACS Appl. Mater. Interfaces 2023, 15, 24901–24912.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y. F.; Zhang, L.; Zhou, B. Q.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Microwave absorption and thermal conductivity properties in NPC@MoSe2/PDMS composites. Carbon 2023, 209, 117997.

    Article  CAS  Google Scholar 

  55. Bai, Y. F.; Yang, H. Z.; He, L. L.; Ge, C. H.; Zhai, R. C.; Zhang, X. D. Construction of core-shell BN-OH@Fe3O4@PAn nanocomposite with ultra-wide microwave absorption and efficiency thermal management. J. Alloys Compd. 2223, 936, 168174.

    Article  Google Scholar 

  56. Wang, Y.; Di, X. C.; Chen, J.; She, L. N.; Pan, H. G.; Zhao, B.; Che, R. C. Muiti-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion, and thermal-insulation. Carbon 2022, 191, 625–635.

    Article  CAS  Google Scholar 

  57. Yang, W. X.; Zhao, Z. D.; Wu, K.; Huang, R.; Liu, T. Y.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756.

    Article  CAS  Google Scholar 

  58. Bai, Y. F.; He, L. L.; Lv, P.; Ge, C. H.; Xu, H. R.; Zhang, X. D. Impedance-matched (hydroxylated nano-BN/reduced graphene oxide)@Fe3O4/polyaniline composite for efficient microwave absorption and thermal management. Mater. Chem. Phys. 2023, 295, 127193.

    Article  CAS  Google Scholar 

  59. Zhang, F.; Feng, Y. Y.; Qin, M. M.; Gao, L.; Li, Z. Y.; Zhao, F. L.; Zhang, Z. X.; Lv, F.; Feng, W. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv. Funct. Mater. 2019, 29, 1901383.

    Article  Google Scholar 

  60. Lv, F.; Qin, M. M.; Zhang, F.; Yu, H. T.; Gao, L.; Lv, P.; Wei, W.; Feng, Y. Y.; Feng, W. High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 2019, 149, 281–289.

    Article  CAS  Google Scholar 

  61. Yu, H. T.; Guo, P. L.; Qin, M. M.; Han, G. Y.; Chen, L.; Feng, Y. Y.; Feng, W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 2022, 222, 109406.

    Article  CAS  Google Scholar 

  62. Mortazavi, B.; Baniassadi, M.; Bardon, J.; Ahzi, S. Modeling of two-phase random composite materials by finite element, Mori–Tanaka, and strong contrast methods. Compos. Part B. Eng. 2013, 45, 1117–1125.

    Article  CAS  Google Scholar 

  63. Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

    Article  Google Scholar 

  64. Guo, Y. Q.; Ruan, K. P.; Shi, X. T.; Yang, X. T.; Gu, J. W. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134.

    Article  CAS  Google Scholar 

  65. Yang, X. T.; Liang, C. B.; Ma, T. B.; Guo, Y. Q.; Kong, J.; Gu, J. W.; Chen, M. J.; Zhu, J. H. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism, and fabrication methods. Adv. Compos. HybridMater. 2018, 1, 207–230.

    Article  Google Scholar 

  66. Gu, J. W.; Xu, S.; Zhuang, Q.; Tang, Y. S.; Kong, J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 784–790.

    Article  CAS  Google Scholar 

  67. Qin, M. M.; Xu, Y. X.; Cao, R.; Feng, W.; Chen, L. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double-continuous network of graphene and sponge. Adv. Funct. Mater. 2018, 28, 1805053.

    Article  Google Scholar 

  68. Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane composites via introducing “line-plane”-like hetero-structured fillers. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106911.

    Article  CAS  Google Scholar 

  69. Lv, P.; Tan, X. W.; Yu, K. H.; Zheng, R. L.; Zheng, J. J.; Wei, W. Super-elastic graphene/carbon nanotube aerogel: A novel thermal interface material with highly thermal transport properties. Carbon 2016, 99, 222–228.

    Article  CAS  Google Scholar 

  70. Qin, M. M.; Feng, Y. Y.; Ji, T. X.; Feng, W. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture. Carbon 2016, 104, 157–168.

    Article  CAS  Google Scholar 

  71. Wu, Y. Q.; Wang, X.; Yao, L. H.; Chang, S. Y.; Wang, X. M. Thermal insulation mechanism, preparation, and modification of nanocellulose aerogels: A review. Molecules 2023, 28, 5836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; **ao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

    Article  CAS  PubMed  Google Scholar 

  74. Wei, C. H.; Shi, L. Z.; Li, M. Q.; He, M. K.; Li, M. J.; **g, X. R.; Liu, P. B.; Gu, J. W. Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 2024, 175, 194–203.

    Article  Google Scholar 

  75. Wang, Y. Y.; Zhou, Z. H.; Zhu, J. L.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Low- temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B. Eng. 2021, 220, 108985.

    Article  CAS  Google Scholar 

  76. Huang, X. G.; Wei, J. W.; Zhang, Y. K.; Qian, B. B.; Jia, Q.; Liu, J.; Zhao, X. J.; Shao, G. F. Ultralight magnetic and dielectric aerogels achieved by metal-organic framework initiated gelation of graphene oxide for enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 107.

    Article  ADS  CAS  Google Scholar 

  77. Cheng, Z.; Wang, R. F.; Wang, Y.; Cao, Y. S.; Shen, Y. X.; Huang, Y.; Chen, Y. S. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 2023, 205, 112–137.

    Article  CAS  Google Scholar 

  78. Sun, F.; Liu, Q. D.; Xu, Y. F.; **n, X. P.; Wang, Z. Z.; Song, X. F.; Zhao, X. F.; Xu, J. J.; Liu, J.; Zhao, L. P. et al. Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance. Chem. Eng. J. 2021, 415, 128976.

    Article  CAS  Google Scholar 

  79. Ma, W. L.; Liu, X. Y.; Qiu, Z. R.; Cai, Z. H.; Diao, J. L.; Huang, Y. Hydrophobic and flame-retardant multifunctional foam for enhanced thermal insulation and broadband microwave absorption via a triple-continuous network of rGO/MWCNT-melamine composite. Carbon 2022, 196, 913–922.

    Article  CAS  Google Scholar 

  80. Jiang, Z. Y.; Gao, Y. J.; Pan, Z. H.; Zhang, M. M.; Guo, J. H.; Zhang, J. W.; Gong, C. H. Pomegranate- like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2024, 174, 195–203.

    Article  Google Scholar 

  81. Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene- based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

    Article  CAS  Google Scholar 

  82. Liu, X. Y.; Ma, W. L.; Qiu, Z. R.; Yang, T. Y.; Wang, J. B.; Ji, X. Y.; Huang, Y. Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene-based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 2023, 17, 8420–8432.

    Article  CAS  PubMed  Google Scholar 

  83. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  84. Zhu, L. L.; Mo, R.; Yin, C. G.; Guo, W. Y.; Yu, J. H.; Fan, J. C. Synergistically constructed electromagnetic network of magnetic particle-decorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Appl. Mater. Interfaces 2022, 14, 56120–56131.

    Article  CAS  PubMed  Google Scholar 

  85. Yang, J. M.; Chen, Y. J.; Yan, X.; Liao, X.; Wang, H.; Liu, C.; Wu, H.; Zhou, Y. Y.; Gao, H.; **a, Y. Y. et al. Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos. Sci. Technol. 2023, 240, 110093.

    Article  CAS  Google Scholar 

  86. Peng, M. Y.; Qin, F. X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108.

    Article  ADS  CAS  Google Scholar 

  87. Cheng, Z.; Cao, Y. S.; Wang, R. F.; **a, L.; Ma, S. P.; Li, Z.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance. Carbon 2021, 185, 669–680.

    Article  CAS  Google Scholar 

  88. Zou, K. K.; Yi, S. Q.; Li, X. Y.; Li, J.; Xu, Y. T.; Li, Z. M.; Yan, D. X.; Wang, H. L. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Compos. Sci. Technol. 2022, 220, 109281.

    Article  CAS  Google Scholar 

  89. Agrawal, P. R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D. P.; Dhakate, S. R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B. Eng. 2019, 160, 131–139.

    Article  CAS  Google Scholar 

  90. Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

    Article  CAS  Google Scholar 

  91. Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

    Article  CAS  Google Scholar 

  92. Liang, C. B.; Song, P.; Ma, A. J.; Shi, X. T.; Gu, H. B.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. W. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683.

    Article  CAS  Google Scholar 

  93. Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300.

    Article  CAS  Google Scholar 

  94. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  ADS  CAS  Google Scholar 

  95. Wang, P. L.; Mai, T.; Zhang, W.; Qi, M. Y.; Chen, L.; Liu, Q.; Ma, M. G. Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small, in press, https://doi.org/10.1002/smll.202304914.

  96. Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

    Article  Google Scholar 

  97. Wu, S. Q.; Chen, D. M.; Han, W. B.; **e, Y. S.; Zhao, G. D.; Dong, S.; Tan, M. Y.; Huang, H.; Xu, S. B.; Chen, G. Q. et al. Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 2022, 446, 137093.

    Article  CAS  Google Scholar 

  98. Lin, S. F.; Ju, S.; Zhang, J. W.; Shi, G.; He, Y.; Jiang, D. Z. Ultrathin flexible graphene films with high thermal conductivity and excellent EMI shielding performance using large-sized graphene oxide flakes. RSC Adv. 2019, 9, 1419–1427.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mani, D.; Vu, M. C.; Lim, C. S.; Kim, J. B.; Jeong, T. H.; Kim, H. J.; Islam, M. A.; Lim, J. H.; Kim, K. M.; Kim, S. R. Stretching induced alignment of graphene nanoplatelets in polyurethane films for superior in-plane thermal conductivity and electromagnetic interference shielding. Carbon 2023, 201, 568–576.

    Article  CAS  Google Scholar 

  100. Zhang, Y.; Yang, S. D.; Zhang, Q.; Ma, Z. Y.; Guo, Y. J.; Shi, M.; Wu, H.; Guo, S. Y. Constructing interconnected asymmetric conductive network in TPU fibrous film: Achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 2023, 206, 37–44.

    Article  CAS  Google Scholar 

  101. Li, Y.; Xu, G. J.; Guo, Y. Q.; Ma, T. B.; Zhong, X.; Zhang, Q. Y.; Gu, J. W. Fabrication, proposed model, and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos. Part A Appl. Sci. Manuf. 2018, 107, 570–578.

    Article  CAS  Google Scholar 

  102. Han, Y. X.; Ruan, K. P.; Gu, J. W. Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem., Int. Ed. 2023, 62, e202216093.

    Article  CAS  Google Scholar 

  103. Li, J. C.; Zhao, X. Y.; Wu, W. J.; Ji, X. W.; Lu, Y. L.; Zhang, L. Q. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 2021, 415, 129054.

    Article  CAS  Google Scholar 

  104. Liu, H. B.; Huang, Z. Y.; Chen, T.; Su, X. Q.; Liu, Y. N.; Fu, R. L. Construction of 3D MXene/silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 2022, 427, 131540.

    Article  CAS  Google Scholar 

  105. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  106. Liang, C. B.; Liu, Y. X.; Ruan, Y. F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H. B.; Gu, J. W. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143.

    Article  Google Scholar 

  107. Liu, C. X.; Ma, Y. N.; **e, Y. M.; Zou, J. J.; Wu, H.; Peng, S. H.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Enhanced electromagnetic shielding and thermal management properties in MXene/aramid nanofiber films fabricated by intermittent filtration. ACS Appl. Mater. Interfaces 2023, 15, 4516–4526.

    Article  CAS  PubMed  Google Scholar 

  108. Chu, Q. D.; Lin, H.; Ma, M.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity. ACS Appl. Nano Mater. 2022, 5, 7217–7227.

    Article  CAS  Google Scholar 

  109. Li, L.; Ma, Z. G.; Xu, P. H.; Zhou, B.; Li, Q. T.; Ma, J. M.; He, C. G.; Feng, Y. Z.; Liu, C. T. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106134.

    Article  CAS  Google Scholar 

  110. Fan, M. S.; Chen, R.; Lu, Y. Z.; Liu, R. K.; Ma, Y.; Zhao, Q. Q.; Ran, S.; Tang, P.; Bin, Y. Z. Flexible microfibrillated cellulose/carbon nanotube multilayered composite films with electromagnetic interference shielding and thermal conductivity. Compos. Commun. 2022, 35, 101293.

    Article  Google Scholar 

  111. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  112. Li, X.; Xu, T. L.; Cao, W. J.; Wang, M. H.; Chen, F. Q.; **, L. Y.; Song, N.; Sun, S.; Ding, P. Graphene/carbon fiber network constructed by co-carbonization strategy for functional integrated polyimide composites with enhanced electromagnetic shielding and thermal conductive properties. Chem. Eng. J. 2023, 464, 142595.

    Article  CAS  Google Scholar 

  113. Wu, B. Z.; Yang, Y. H.; Zhu, K. Q.; Liu, S. Y.; Liu, R. R.; Zhu, H. H.; Li, Y. L. Robust polyamide 66 composites with hybrid fillers for thermal management and electromagnetic shielding. Polym. Compos. 2023, 44, 3126–3138.

    Article  CAS  Google Scholar 

  114. Fan, B. X.; **ng, L.; Yang, K. X.; Yang, Y. J.; Zhou, F. J.; Tong, G. X.; Wu, W. H. Salt- templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon 2023, 207, 317–327.

    Article  CAS  Google Scholar 

  115. Barani, Z.; Kargar, F.; Mohammadzadeh, A.; Naghibi, S.; Lo, C.; Rivera, B.; Balandin, A. A. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures. Adv. Electron. Mater. 2020, 6, 2000520.

    Article  CAS  Google Scholar 

  116. Liang, C. B.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733.

    Article  CAS  Google Scholar 

  117. Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chin. J. Polym. Sci. 2017, 35, 1497–1507.

    Article  CAS  Google Scholar 

  118. Li, Y.; Xue, B.; Yang, S. D.; Cheng, Z. L.; **e, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.

    Article  CAS  Google Scholar 

  119. Li, Y. K.; Li, W. J.; Wang, Z. X.; Du, P. Y.; Xu, L.; Jia, L. C.; Yan, D. X. High-efficiency electromagnetic interference shielding and thermal management of high-graphene nanoplate-loaded composites enabled by polymer-infiltrated technique. Carbon 2023, 211, 118096.

    Article  CAS  Google Scholar 

  120. Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

    Article  CAS  Google Scholar 

  121. Patle, V. K.; Mehta, Y.; Dwivedi, N.; Mondal, D. P.; Srivastava, A. K.; Kumar, R. Thermal insulating and fire-retardant lightweight carbon-slag composite foams towards absorption dominated electromagnetic interference shielding. Sustainable Mater. Techno. 2022, 33, e00453.

    Article  CAS  Google Scholar 

  122. Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

    Article  ADS  CAS  Google Scholar 

  123. Jiang, X. Y.; Zhao, Z. X.; Zhou, S. T.; Zou, H. W.; Liu, P. B. Anisotropic and lightweight carbon/graphene composite aerogels for efficient thermal insulation and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 45844–45852.

    Article  CAS  PubMed  Google Scholar 

  124. Liang, C. Y.; Wang, Z. F.; Wu, L. N.; Zhang, X. C.; Wang, H.; Wang, Z. J. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl. Mater. Interfaces 2017, 9, 29950–29957.

    Article  CAS  PubMed  Google Scholar 

  125. Guo, Z. Z.; Ren, P. G.; Wang, J.; Huo, X.; Tang, J. H.; Liu, Z. B.; Chen, Z. Y.; **, Y. L.; Ren, F. Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138667.

    Article  CAS  Google Scholar 

  126. **e, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; **e, Q.; **a, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

    Article  CAS  Google Scholar 

  127. Wang, H.; He, D. Y.; Qiu, J.; Ma, Y. Y.; Wang, J.; Li, Y. X.; Chen, J. Y.; Wang, C. PAN/W18O49/Ag nanofibrous membrane for high-efficient and multi-band electromagnetic-interference shielding with broad temperature tolerance and good thermal isolating capacity. Compos. Part B. Eng. 2022, 236, 109793.

    Article  CAS  Google Scholar 

  128. Guo, Y. B.; Vokhidova, N. R.; Wang, Q.; Lan, B. J.; Lu, Y. X. Lightweight and thermal insulation fabric-based composite foam for high-performance electromagnetic interference shielding. Mater. Chem. Phys. 2023, 303, 127787.

    Article  CAS  Google Scholar 

  129. Zhang, P.; Cao, Z.; Liu, C. L.; Li, P. N.; Kong, H.; Li, T.; Luo, X. M.; Feng, J. Y.; Yuan, K. Y.; Xu, R. Q. Ultra-thin freestanding graphene films for efficient thermal insulation and electromagnetic interference shielding. RSCAdv. 2023, 13, 19388–19402.

    ADS  CAS  Google Scholar 

  130. Chithra, A.; Wilson, P.; Vijayan, S.; Rajeev, R.; Prabhakaran, K. Thermally insulating robust carbon composite foams with high EMI shielding from natural cotton. J. Mater. Sci. Technol. 2021, 94, 113–122.

    Article  CAS  Google Scholar 

  131. Raji, S.; Sharma, G. K.; Aranya, B. R.; Prabhakaran, K. Carbon composite foams from the wasted banana leaf for EMI shielding and thermal insulation. Carbon 2023, 213, 118259.

    Article  CAS  Google Scholar 

  132. Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S. S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2-C fillers and their silicone rubber wave-absorbing composites. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105714.

    Article  CAS  Google Scholar 

  133. Zhang, Y. W.; Li, S. S.; Tang, X. W.; Fan, W.; Lan, Q. Q.; Li, L.; Ma, P. M.; Dong, W. F.; Wang, Z. C.; Liu, T. X. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption. J. Mater. Sci. Technol. 2022, 102, 97–104.

    Article  CAS  Google Scholar 

  134. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

    Article  CAS  Google Scholar 

  135. Qian, Y. X.; Tao, Y.; Li, W.; Li, Y.; Xu, T.; Hao, J. N.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. High electromagnetic wave absorption and thermal management performance in 3D CNF@C-Ni/epoxy resin composites. Chem. Eng. J. 2021, 425, 131608.

    Article  CAS  Google Scholar 

  136. Jiao, Z. B.; Huyan, W. J.; Yang, F.; Yao, J. R.; Tan, R. Y.; Chen, P.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Liu, P. J. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 2022, 14, 173.

    Article  ADS  CAS  Google Scholar 

  137. Zhou, M. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Lin, S. W.; Wang, G. Z. CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. J. Mater. Chem. C 2021, 9, 869–880.

    Article  CAS  Google Scholar 

  138. Pan, Y.; Yang, B.; Jia, N.; Yu, Y. N.; Xu, X.; Wang, Y. Y.; **a, R.; Qian, J. S.; Wang, C. J.; Sun, A. Q. et al. Enhanced thermally conductive and microwave absorbing properties of polymethyl methacrylate/Ni@GNP nanocomposites. Ind. Eng. Chem. Res. 2021, 60, 12316–12327.

    Article  CAS  Google Scholar 

  139. Fang, X.; Pan, L. M.; Yin, S.; Chen, H. X.; Qiu, T.; Yang, J. Spherical glassy carbon/AlN microwave attenuating composite ceramics with high thermal conductivity and strong attenuation. Ceram. Int. 2020, 46, 21505–21516.

    Article  CAS  Google Scholar 

  140. He, Y. Q.; Li, X. Y.; Zhang, J. X.; Li, X. G.; Duan, Y. S.; Huang, M. M.; Bai, H. N.; Jiang, D. L.; Qiu, T. Method for fabricating microwave absorption ceramics with high thermal conductivity. J. Eur. Ceram. Soc. 2018, 38, 501–505.

    Article  CAS  Google Scholar 

  141. Fang, X.; Hou, S. J.; Pan, L. M.; Yin, S.; Wang, Y.; Li, Q.; Chen, D. P.; **, J. Y.; Yang, J. Coee-shell spherical graphite@SiC attenuating agent for AlN-based microwave attenuating ceramics with high-efficiency thermal conduction and microwave absorption abilities. Ceram. Int. 2023, 49, 25063–25073.

    Article  CAS  Google Scholar 

  142. Ma, L. L.; Dou, Z. F.; Li, D. G.; Liu, J.; Xu, Y.; Wang, G. Z. Facile synthesis of nitrogen-doped porous Ni@C nanocomposites with excellent synergistically enhanced microwave absorption and thermal conductive performances. Carbon 2023, 201, 587–598.

    Article  CAS  Google Scholar 

  143. Mou, P. P.; Zhao, J. C.; Wang, G. Z.; Shi, S. H.; Wan, G. P.; Zhou, M. F.; Deng, Z.; Teng, S. J.; Wang, G. L. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem. Eng. J. 2022, 437, 135285.

    Article  CAS  Google Scholar 

  144. Wang, L. F.; An, L. Q.; Zhou, G. H.; Wang, X. G.; Sun, K.; Chen, H. T.; Hou, H. T. Dense AlN/FeSiAl composite ceramics with high thermal conductivity and strong microwave absorption. J. Mater. Sci. Mater. Electron. 2022, 33, 10723–10733.

    Article  CAS  Google Scholar 

  145. Zhang, Z.; Wang, J. D.; Shang, J.; Xu, Y. D.; Wan, Y. J.; Lin, Z. Q.; Sun, R.; Hu, Y. G. A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 2023, 19, 2205716.

    Article  CAS  Google Scholar 

  146. Pan, D.; Yang, G.; Abo-Dief, H. M.; Dong, J. W.; Su, F. M.; Liu, C. T.; Li, Y. F.; Xu, B. B.; Murugadoss, V.; Naik, N. et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano- Micro Lett. 2022, 14, 118.

    Article  ADS  CAS  Google Scholar 

  147. Han, X. P.; Huang, Y.; Wang, J. M.; Zhang, G. Z.; Li, T. H.; Liu, P. B. Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity, and strong electro-thermal effect. Compos. Part B: Eng. 2022, 229, 109458.

    Article  CAS  Google Scholar 

  148. Bai, Y. F.; Liu, R.; Wang, L. X.; Ge, C. H.; Shi, G. M.; Zhang, X. D. Microwave absorption and thermal conductivity properties of HO-BNNS@Fe3O4 composites. J. Alloys Compd. 2020, 837, 155574.

    Article  CAS  Google Scholar 

  149. Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth, and heat insulation. Chem. Eng. J. 2023, 452, 139376.

    Article  CAS  Google Scholar 

  150. Shang, S. Y.; Zhao, N.; Chen, Y. Q.; Wang, X. H.; Hu, F. Y.; Fan, B. B.; Zhao, B.; Lu, H. X.; Wang, H. L.; Zhang, R. Ti3C2Tx/rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm 2022, 24, 4556–4563.

    Article  CAS  Google Scholar 

  151. Liu, Q.; Tang, L.; Li, J. Z.; Chen, Y.; Xu, Z. K.; Li, J. T.; Chen, X. Y.; Meng, F. B. Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption, and heat insulation performance. J. Mater. Sci. Technol. 2022, 130, 166–175.

    Article  CAS  Google Scholar 

  152. Yang, F.; Yao, J. R.; Shen, Z.; Ma, Q.; Peng, G. Y.; Zhou, J. T.; Yao, Z. J.; Tao, X. W. Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature. J. Colloid Interface Sci. 2023, 638, 843–854.

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Liang, C. Y.; Wang, Z. J. Eggplant-derived SiC aerogels with high-performance electromagnetic wave absorption and thermal insulation properties. Chem. Eng. J. 2019, 373, 598–605.

    Article  CAS  Google Scholar 

  154. Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

    Article  CAS  PubMed  Google Scholar 

  155. Dong, Y. P.; Fan, X. M.; Wei, H. J.; Hou, Z. X.; Li, M. H.; Qu, Q.; Yin, X. W.; Cheng, L. F.; Zhang, L. T. A lightweight CNWs-SiO2/3Al2O3-2SiO2 porous ceramic with excellent microwave absorption and thermal insulation properties. Ceram. Int. 2020, 46, 20395–20403.

    Article  CAS  Google Scholar 

  156. Zhang, Q. Q.; Zhang, F.; Medarametla, S. P.; Li, H.; Zhou, C.; Lin, D. 3D printing of graphene aerogels. Small 2016, 12, 1702–1708.

    Article  CAS  PubMed  Google Scholar 

  157. Luo, J. W.; Wang, Y.; Qu, Z. J.; Wang, W.; Yu, D. Lightweight and robust cobalt ferrite/carbon nanotubes/waterborne polyurethane hybrid aerogels for efficient microwave absorption and thermal insulation. J. Mater. Chem. C 2021, 9, 12201–12212.

    Article  CAS  Google Scholar 

  158. Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose- chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

    Article  CAS  Google Scholar 

  159. Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated rGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 2021, 604, 402–414.

    Article  ADS  CAS  PubMed  Google Scholar 

  160. **ang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant, and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

    Article  CAS  Google Scholar 

  161. Xu, J.; Zhang, X.; Zhao, Z. B.; Hu, H.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties. Small 2021, 17, 2102032.

    Article  CAS  Google Scholar 

  162. Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

    Article  CAS  Google Scholar 

  163. Gao, Y.; Lei, Z. K.; Pan, L. N.; Wu, Q.; Zhuang, X. H.; Tan, G. G.; Ning, M. Q.; Man, Q. K. Lightweight chitosan-derived carbon/rGO aerogels loaded with hollow Co1−xNixD nanocubes for superior electromagnetic wave absorption and heat insulation. Chem. Eng. J. 2023, 457, 141325.

    Article  CAS  Google Scholar 

  164. Wang, Y. H.; Zhang, M. H.; Deng, X. S.; Li, Z. G.; Chen, Z. S.; Shi, J. M.; Han, X. J.; Du, Y. C. Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation, and microwave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 536–547.

    Article  CAS  Google Scholar 

  165. Zhang, B. J.; Liu, Y.; Li, X. L.; Su, D.; Ji, H. M. Closed-cell ZrO2/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties. J. Alloys Compd. 2022, 927, 167036.

    Article  CAS  Google Scholar 

  166. Song, L. M.; Chen, Y. Q.; Gao, Q. C.; Li, Z.; Zhang, X. Y.; Wang, H. L.; Guan, L.; Yu, Z. J.; Zhang, R.; Fan, B. B. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106980.

    Article  CAS  Google Scholar 

  167. Ma, T. B.; Ruan, K. P.; Guo, Y. Q.; Han, Y. X.; Gu, J. W. Controlled length and number of thermal conduction pathways for copper wire/poly(lactic acid) composites via 3D printing. Sci. China Mater. 2023, 66, 4012–4021.

    Article  CAS  Google Scholar 

  168. Tian, L.; Gu, H. D.; Zhang, Q. Q.; You, X.; Wang, M. M.; Yang, J. S.; Dong, S. M. Multifunctional hierarchical metamaterial for thermal insulation and electromagnetic interference shielding at elevated temperatures. ACS Nano 2023, 17, 12673–12683.

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

    Article  CAS  Google Scholar 

  170. Zhang, Y. L.; Gu, J. W. A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB3805702), the National Natural Science Foundation of China (Nos. 52173078, 52130303, 51973158, 51803151, and 51973152), and the Science Foundation for Distinguished Young Scholars in Tian** (No. 19JCJQJC61700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengmeng Qin or Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, J., Feng, Y., Qin, M. et al. Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications. Nano Res. 17, 883–903 (2024). https://doi.org/10.1007/s12274-023-6257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6257-y

Keywords

Navigation