Log in

A Biomimetic Surface for Infection-resistance through Assembly of Metal-phenolic Networks

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Despite the fact that numerous infection-resistant surfaces have been developed to prevent bacterial colonization and biofilm formation, develo** a stable, highly antibacterial and easily produced surface remains a technical challenge. As a crucial structural component of biofilm, extracellular DNA (eDNA) can facilitate initial bacterial adhesion, subsequent development, and final maturation. Inspired by the mechanistic pathways of natural enzymes (deoxyribonuclease), here we report a novel antibacterial surface by employing cerium (Ce(IV)) ion to mimic the DNA-cleavage ability of natural enzymes. In this process, the coordination chemistry of plant polyphenols and metal ions was exploited to create an in situ metal-phenolic film on substrate surfaces. Tannic acid (TA) works as an essential scaffold and Ce(IV) ion acts as both a cross-linker and a destructor of eDNA. The Ce(IV)-TA modified surface exhibited highly enhanced bacteria repellency and biofilm inhibition when compared with those of pristine or Fe(III)-TA modified samples. Moreover, the easily produced coatings showed high stability under physiological conditions and had nontoxicity to cells for prolonged periods of time. This as-prepared DNA-cleavage surface presents versatile and promising performances to combat biomaterial-associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35(6), 713–720.

    Article  CAS  Google Scholar 

  2. Campoccia, D.; Montanaro, L.; Arciola, C. R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34(34), 8533–8554.

    Article  CAS  Google Scholar 

  3. Pozzi, C.; Waters, E. M.; Rudkin, J. K.; Schaeffer, C. R. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012, 8(4), DOI: 10.1371/journal.ppat.1002626

    Google Scholar 

  4. Banerjee, I.; Pangule, R. C.; Kane, R. S.; Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23(6), 690–718.

    Article  CAS  Google Scholar 

  5. Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23(6), 690–718.

    Article  CAS  Google Scholar 

  6. Nie, G. H.; Wu, W. J.; Yue, X.; Liao, S. J. Synthesis and properties of hydroxide conductive polymers carrying dense aromatic side-chain quaternary ammonium groups. Chinese J. Polym. Sci. 2017, 35(7), 823–836.

    Article  CAS  Google Scholar 

  7. Shi, J.; Liu, Y.; Wang, Y.; Zhang, J. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci. Rep. 2015, 5, 16336–16341

    Article  CAS  Google Scholar 

  8. Swartjes, J. J.; Das, T.; Sharifi, S.; Subbiahdoss, G.; van der Mei, H. C. A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Adv. Funct. Mater. 2013, 23(22), 2843–2849.

    Article  CAS  Google Scholar 

  9. Das, T., Sehar, S., Manefield, M., The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Env. Microbiol. Rep. 2013, 5(6), 778–786.

    Article  CAS  Google Scholar 

  10. Whitchurch, C. B.; Tolker-Nielsen, T.; Ragas, P. C.; Extracellular DNA required for bacterial biofilm formation. Science 2002, 295(5559), 1487–1487.

    Article  CAS  Google Scholar 

  11. Yuan, S.; Zhao, J.; Luan, S.; Yan, S.; Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with antiinfection and tissue integration bifunctions. ACS Appl. Mater. Interfaces 2014, 6(20), 18078–18086.

    Article  CAS  Google Scholar 

  12. Komiyama, M.; Takeda, N.; Shigekawa, H.; Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications. Chem. Commun. 1999, 16, 1443–1451.

    Article  Google Scholar 

  13. Li, F. Z.; **e, J. Q.; Feng, F. M. Copper and zinc complexes of a diaza-crown ether as artificial nucleases for the efficient hydrolytic cleavage of DNA. New J. Chem., 2015, 39(7), 5654–5660.

    Article  CAS  Google Scholar 

  14. Livieri, M.; Mancin, F.; Saielli, G.; Chin, J. Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. Chem. Eur. J. 2007, 13(8), 2246–2256.

    Article  CAS  Google Scholar 

  15. Chen, Z.; Ji, H.; Liu, C.; Qu, X. A multinuclear metal complex based dnase mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angew. Chem. Int. Ed. 2016, 128(36), 10890–10894.

    Article  Google Scholar 

  16. Jiang, R.; **n, Z.; Xu, S.; Shi, H.; Enzyme-mimicking polymer brush-functionalized surface for combating biomaterialassociated infections. Appl. Surf. Sci. 2017, 423, 869–880.

    Article  CAS  Google Scholar 

  17. Huang, X. F.; Jia, J. W.; Wang, Z. K.; Hu, Q. L.; A novel chitosan-based sponge coated with self-assembled thrombin/tannic acid multilayer films as a hemostatic dressing. Chinese J. Polym. Sci. 2015, 33(2), 284–290.

    Article  CAS  Google Scholar 

  18. Quideau, S.; Deffieux, D.; Douat-Casassus, C. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011, 50(3), 586–621.

    Article  CAS  Google Scholar 

  19. Ejima, H.; Richardson, J. J.; Liang, K.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341(6142), 154–157.

    Article  CAS  Google Scholar 

  20. Rahim, M. A.; Ejima, H.; Cho, K. L.; Caruso, F. Coordination-driven multistep assembly of metal-polyphenol films and capsules. Chem. Mater. 2014, 26(4), 1645–1653.

    Article  CAS  Google Scholar 

  21. Guo, J.; **, Y.; Ejima, H.; Alt, K.; Caruso, F. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 2014, 53(22), 5546–5551.

    Article  CAS  Google Scholar 

  22. Yang, L.; Han, L.; Jia, L.; A novel platelet-repellent polyphenolic surface and its micropattern for platelet adhesion detection. ACS Appl. Mater. Interfaces 2016, 8(40), 26570–26577.

    Article  CAS  Google Scholar 

  23. Lee, H.; Dellatore, S. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318(5849), 426–430.

    Article  CAS  Google Scholar 

  24. Han, X.; Zhou, Y.; Hu, J.; Liu, H. Surface modification and characterization of SEBS films obtained by in situ and ex situ oxidization with potassium permanganate. J. Polym. Sci., Part B: Polym. Phys. 2010, 48(21), 2262–2273.

    Article  CAS  Google Scholar 

  25. Nejadnik, M. R.; van der Mei, H. C.; Norde, W. Bacterial adhesion and growth on a polymer brush-coating. Biomaterials 2008, 29(30), 4117–4121.

    Article  CAS  Google Scholar 

  26. Kim, T. J.; Silva, J. L.; Jung, Y. S. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011, 126(1), 116–120.

    Article  CAS  Google Scholar 

  27. Flemming, H. C.; Wingender, J.; Szewzyk, U.; Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14(9), 563–575.

    Article  CAS  Google Scholar 

  28. Tamboli, M. S.; Kulkarni, M. V.; Patil, R. H.; Kale, B. B. Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf. B 2012, 92, 35–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Program Funds of Jilin University (Nos. 419080500665 and 451170301076), and the Natural Science Foundation of Shandong Province (No. ZR2015EM036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Rong **n or Jie Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, RJ., Yan, SJ., Tian, LM. et al. A Biomimetic Surface for Infection-resistance through Assembly of Metal-phenolic Networks. Chin J Polym Sci 36, 576–583 (2018). https://doi.org/10.1007/s10118-018-2032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2032-z

Keywords

Navigation