Nanoengineered Surfaces as a Tool Against Bacterial Biofilm Formation

  • Chapter
  • First Online:
Materials with Extreme Wetting Properties

Abstract

Biofilms can be understood as multilevel structures of microbial cells on a surface enclosed by an extracellular matrix. This type of organization is considered an adaptation mechanism that is adopted by many microorganisms to promote, among other things, protection against the exterior environment. This protective profile became a substantial problem in the case of bacterial infections since conventional treatment with antibiotics, for example, is less or noneffective. Thus, considering that bacterial cells need to attach to a surface to begin biofilm formation, some techniques have targeted the bacterial adhesion stage. These approaches are based on building materials with nanoengineered surfaces built with microdomain and nanodomain to minimize the contact with bacterial surface area and, therefore, promote interactions that keep cells from attaching to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018;81:7–11. https://doi.org/10.1016/j.jcma.2017.07.012.

    Article  Google Scholar 

  2. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7:1–7. https://doi.org/10.1038/ijos.2014.65.

    Article  CAS  Google Scholar 

  3. Kumar P, Mishra S, Singh S. Advanced acuity in microbial biofilm genesis, development, associated clinical infections and control. Journal des Anti-infectieux. 2017;19:20–31. https://doi.org/10.1016/j.antinf.2017.01.002.

    Article  Google Scholar 

  4. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4:e01067. https://doi.org/10.1016/j.heliyon.2018.e01067.

    Article  Google Scholar 

  5. Stoica P, Chifiriuc MC, Rapa M, Lazăr V. Overview of biofilm-related problems in medical devices. In: Biofilms and implantable medical devices. Amsterdam: Elsevier; 2017. p. 3–23.

    Chapter  Google Scholar 

  6. Koseki H, Yonekura A, Shida T, Yoda I, Horiuchi H, Morinaga Y, Yanagihara K, Sakoda H, Osaki M, Tomita M. Early staphylococcal biofilm formation on solid Orthopaedic implant materials: in vitro study. PLoS One. 2014;9:e107588. https://doi.org/10.1371/journal.pone.0107588.

    Article  CAS  Google Scholar 

  7. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol. 2016;198:1–15. https://doi.org/10.1007/s00203-015-1148-6.

    Article  CAS  Google Scholar 

  8. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108. https://doi.org/10.1038/nrmicro821.

    Article  CAS  Google Scholar 

  9. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the Dawn of the Postantibiotic era. Cold Spring Harb Perspect Med. 2013;3:a010306. https://doi.org/10.1101/cshperspect.a010306.

    Article  CAS  Google Scholar 

  10. Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 2018;62. https://doi.org/10.1128/AAC.00320-18.

  11. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409. https://doi.org/10.1038/s41579-018-0019-y.

    Article  CAS  Google Scholar 

  12. Chen L, Wen Y. The role of bacterial biofilm in persistent infections and control strategies. Int J Oral Sci. 2011;3:66–73. https://doi.org/10.4248/IJOS11022.

    Article  CAS  Google Scholar 

  13. Römling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Åkerlund B. Microbial biofilm formation: a need to act. J Intern Med. 2014;276:98–110. https://doi.org/10.1111/joim.12242.

    Article  Google Scholar 

  14. Tolker-Nielsen T. Biofilm development. Microbiol Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.MB-0001-2014.

  15. Birošová L, Mackuľak T, Bodík I, Ryba J, Škubák J, Grabic R. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci Total Environ. 2014;490:440–4. https://doi.org/10.1016/j.scitotenv.2014.05.030.

    Article  CAS  Google Scholar 

  16. Alexander J, Bollmann A, Seitz W, Schwartz T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci Total Environ. 2015;512–513:316–25. https://doi.org/10.1016/j.scitotenv.2015.01.046.

    Article  CAS  Google Scholar 

  17. Harris S, Morris C, Morris D, Cormican M, Cummins E. Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate. Sci Total Environ. 2014;468–469:1078–85. https://doi.org/10.1016/j.scitotenv.2013.09.017.

    Article  CAS  Google Scholar 

  18. Tao C-W, Hsu B-M, Ji W-T, Hsu T-K, Kao P-M, Hsu C-P, Shen S-M, Shen T-Y, Wan T-J, Huang Y-L. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ. 2014;496:116–21. https://doi.org/10.1016/j.scitotenv.2014.07.024.

    Article  CAS  Google Scholar 

  19. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40:277–83.

    Google Scholar 

  20. Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP. Biophysical model of bacterial cell interactions with Nanopatterned Cicada wing surfaces. Biophys J. 2013;104:835–40. https://doi.org/10.1016/j.bpj.2012.12.046.

    Article  CAS  Google Scholar 

  21. Lepore E, Giorcelli M, Saggese C, Tagliaferro A, Pugno N. Mimicking water striders’ legs superhydrophobicity and buoyancy with cabbage leaves and nanotube carpets. J Mater Res. 2013;28:976–83. https://doi.org/10.1557/jmr.2012.382.

    Article  CAS  Google Scholar 

  22. Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol. 2011;2:152–61. https://doi.org/10.3762/bjnano.2.19.

    Article  CAS  Google Scholar 

  23. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by Cicada wings. Small. 2012;8:2489–94. https://doi.org/10.1002/smll.201200528.

    Article  CAS  Google Scholar 

  24. Lee W, Park S-J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev. 2014;114:7487–556. https://doi.org/10.1021/cr500002z.

    Article  CAS  Google Scholar 

  25. Ferreira MGS, Zheludkevich ML, Tedim J, Yasakau KA. Self-healing nanocoatings for corrosion control. In: Corrosion protection and control using nanomaterials. Elsevier Cambridge; 2012. p. 213–63.

    Google Scholar 

  26. Wu Y, Zhao W, Wang W, Wang L, Xue Q. Novel anodic oxide film with self-sealing layer showing excellent corrosion resistance. Sci Rep. 2017;7. https://doi.org/10.1038/s41598-017-01549-y.

  27. Buff H. Ueber das electrische Verhalten des Aluminiums. Annalen der Chemie und Pharmacie. 1857;102:265–84. https://doi.org/10.1002/jlac.18571020302.

    Article  Google Scholar 

  28. Ali HO. Review of porous anodic aluminium oxide (AAO) applications for sensors, MEMS and biomedical devices. Trans IMF. 2017;95:290–6. https://doi.org/10.1080/00202967.2017.1358514.

    Article  CAS  Google Scholar 

  29. Tsai B-F, Chen Y-C, Ou S-F, Wang K-K, Hsu Y-C. Fabrication of superhydrophobic titanium surfaces by anodization and surface mechanical attrition treatment. Int J Appl Ceram Technol. 2019;16:211–20. https://doi.org/10.1111/ijac.13104.

    Article  CAS  Google Scholar 

  30. İzmir M, Ercan B. Anodization of titanium alloys for orthopedic applications. Front Chem Sci Eng. 2019;13:28–45. https://doi.org/10.1007/s11705-018-1759-y.

    Article  CAS  Google Scholar 

  31. Ahmad A, Haq EU, Akhtar W, Arshad M, Ahmad Z. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes. Appl Nanosci. 2017;7:701–10. https://doi.org/10.1007/s13204-017-0608-5.

    Article  CAS  Google Scholar 

  32. Omidvar H, Goodarzi S, Seif A, Azadmehr AR. Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlattice Microst. 2011;50:26–39. https://doi.org/10.1016/j.spmi.2011.04.006.

    Article  CAS  Google Scholar 

  33. Zhang Y, Lin T. Influence of duty cycle on properties of the superhydrophobic coating on an anodized magnesium alloy fabricated by pulse electrodeposition. Colloids Surf A Physicochem Eng Asp. 2019;568:43–50. https://doi.org/10.1016/j.colsurfa.2019.01.078.

    Article  CAS  Google Scholar 

  34. Cipriano AF, Lin J, Miller C, Lin A, Cortez Alcaraz MC, Soria P, Liu H. Anodization of magnesium for biomedical applications – processing, characterization, degradation and cytocompatibility. Acta Biomater. 2017;62:397–417. https://doi.org/10.1016/j.actbio.2017.08.017.

  35. Xue D, Yun Y, Schulz MJ, Shanov V. Corrosion protection of biodegradable magnesium implants using anodization. Mater Sci Eng C. 2011;31:215–23. https://doi.org/10.1016/j.msec.2010.08.019.

    Article  CAS  Google Scholar 

  36. Kim S, Hyun S, Lee J, Lee KS, Lee W, Kim JK. Anodized aluminum oxide/polydimethylsiloxane hybrid Mold for roll-to-roll nanoimprinting. Adv Funct Mater. 2018;28:1800197. https://doi.org/10.1002/adfm.201800197.

    Article  CAS  Google Scholar 

  37. Mymrin V, Molinetti A, Alekseev K, Avanci MA, Klitzke W, Silva DA, Ferraz FA, Iarozinski NA, Catai RE. Characterization of construction materials on the base of mortar waste, activated by aluminum anodization sludge and lime production waste. Constr Build Mater. 2019;212:202–9. https://doi.org/10.1016/j.conbuildmat.2019.03.276.

    Article  CAS  Google Scholar 

  38. Yanagishita T, Murakoshi K, Kondo T, Masuda H. Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Adv. 2018;8:36697–704. https://doi.org/10.1039/C8RA07497F.

    Article  CAS  Google Scholar 

  39. Leontiev AP, Roslyakov IV, Napolskii KS. Complex influence of temperature on oxalic acid anodizing of aluminium. Electrochim Acta. 2019;319:88–94. https://doi.org/10.1016/j.electacta.2019.06.111.

    Article  CAS  Google Scholar 

  40. Kozhukhova AE, du Preez SP, Bessarabov DG. Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082). Surf Coat Technol. 2019;378:124970. https://doi.org/10.1016/j.surfcoat.2019.124970.

    Article  CAS  Google Scholar 

  41. Hizal F, Rungraeng N, Lee J, Jun S, Busscher HJ, van der Mei HC, Choi C-H. Nanoengineered Superhydrophobic surfaces of aluminum with extremely low bacterial Adhesivity. ACS Appl Mater Interfaces. 2017;9:12118–29. https://doi.org/10.1021/acsami.7b01322.

    Article  CAS  Google Scholar 

  42. Huang Q, Wu H, Cai P, Fein JB, Chen W. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep. 2015; 5. https://doi.org/10.1038/srep16857.

  43. Li X, Logan BE. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy. Langmuir. 2004;20:8817–22. https://doi.org/10.1021/la0488203.

    Article  CAS  Google Scholar 

  44. Potthoff E, Ossola D, Zambelli T, Vorholt JA. Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale. 2015;7:4070–9. https://doi.org/10.1039/C4NR06495J.

    Article  CAS  Google Scholar 

  45. Hubenthal F. Noble metal nanoparticles: synthesis and optical properties. In: Comprehensive nanoscience and technology. London: Elsevier; 2011. p. 375–435.

    Chapter  Google Scholar 

  46. Kim M, Ha D, Kim T. Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications. Nat Commun. 2015;6. https://doi.org/10.1038/ncomms7247.

  47. Koek BH, Chisholm TV, Run AJ, Romijn J, Davey JP. An electron beam lithography tool with a Schottky emitter for wide range applications. Microelectron Eng. 1994;23:81–4. https://doi.org/10.1016/0167-9317(94)90109-0.

    Article  Google Scholar 

  48. Moradian S, Modarres-Zadeh MJ, Abdolvand R. Thermal conductivity in nanoscale polysilicon structures with applications in sensors. Sensors Actuators A Phys. 2019;295:596–603. https://doi.org/10.1016/j.sna.2019.06.006.

    Article  CAS  Google Scholar 

  49. Li X, Matino L, Zhang W, Klausen L, McGuire AF, Lubrano C, Zhao W, Santoro F, Cui B. A nanostructure platform for live-cell manipulation of membrane curvature. Nat Protoc. 2019;14:1772–802. https://doi.org/10.1038/s41596-019-0161-7.

    Article  CAS  Google Scholar 

  50. Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q. Nanostructured surface topographies have an effect on bactericidal activity. J Nanobiotechnol. 2018;16. https://doi.org/10.1186/s12951-018-0347-0.

  51. Lutey AHA, Gemini L, Romoli L, Lazzini G, Fuso F, Faucon M, Kling R. Towards laser-textured antibacterial surfaces. Sci Rep. 2018;8. https://doi.org/10.1038/s41598-018-28454-2.

  52. Ellinas K, Kefallinou D, Stamatakis K, Gogolides E, Tserepi A. Is there a threshold in the antibacterial action of Superhydrophobic surfaces? ACS Appl Mater Interfaces. 2017;9:39781–9. https://doi.org/10.1021/acsami.7b11402.

    Article  CAS  Google Scholar 

  53. Ren T, Yang M, Wang K, Zhang Y, He J. CuO nanoparticles-containing highly transparent and Superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property. ACS Appl Mater Interfaces. 2018;10:25717–25. https://doi.org/10.1021/acsami.8b09945.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by FAPERGS (Project # 19/2551-0001869-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Zimnoch dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos da Silva, A., dos Santos, J.H.Z. (2021). Nanoengineered Surfaces as a Tool Against Bacterial Biofilm Formation. In: Hosseini, M., Karapanagiotis, I. (eds) Materials with Extreme Wetting Properties. Springer, Cham. https://doi.org/10.1007/978-3-030-59565-4_5

Download citation

Publish with us

Policies and ethics

Navigation