Log in

The implication of blue light-emitting diode on mesenchymal stem cells: a systematic review

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The application of blue light (400–480 nm) in photobiotherapy remains controversial. This systematic review aimed to collect and analyze the biological effects of blue light-emitting diode (LED) on mesenchymal stem cells (MSCs). Inclusion and exclusion criteria were formulated, and relevant English articles from January 1982 to September 2022 were searched in PubMed, Scopus, and Web of Science. Nine articles with a medium (n = 4) to low (n = 5) risk of bias were included. Most of the MSCs reported were derived from human tissue; only one article used MSCs derived from mouse. The wavelength of the LED used was in the 400–480 nm range, and the irradiation modes were continuous (n = 8) and pulse waves (n = 1). A chiral polarizer was used in one such study in which the irradiance was 14 mW/cm2 and the irradiation time was 24 h. The energy densities used in other studies were between 0.378 and 72 J/cm2, and the irradiation times were between 10 and 3600 s. Blue LED light can inhibit proliferation and promote differentiation of MSCs in an appropriate energy density range, which may be related to the activation of transient receptor potential vanilloid 1 (TRPV1). Additionally, polarized light may reduce the toxic effects of blue light on MSCs. However, the heterogeneity of the design schemes and LED parameters, as well as the small number of studies, limited the conclusiveness of the review. Therefore, further studies are needed to determine the optimal irradiation strategy for promoting MSC function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chu DT, Phuong TNT, Tien NLB et al (2020) An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci 21(3):708. https://doi.org/10.3390/ijms21030708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karpov AA, Udalova DV, Pliss MG et al (2017) Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 50(2):e12316. https://doi.org/10.1111/cpr.12316

    Article  PubMed  Google Scholar 

  3. Pinto H, Oliver PG, Mengual ESV (2021) The effect of photobiomodulation on human mesenchymal cells: a literature review. Aesthetic Plast Surg 45(4):1826–1842. https://doi.org/10.1007/s00266-021-02173-y

    Article  PubMed  Google Scholar 

  4. Fekrazad S, Sohrabi M, Fekrazad R (2023) Angiogenetic and anti-inflammatory effects of photobiomodulation on bone regeneration in rat: a histopathological, immunohistochemical, and molecular analysis. J Photoch Photobio B 238:112599. https://doi.org/10.1016/j.jphotobiol.2022.112599

    Article  CAS  Google Scholar 

  5. Hafner D, Hrast P, Tomazevic T et al (2023) Photobiomodulation for chemotherapy-induced oral mucositis in pediatric patients. Biomolecules 13(3):418. https://doi.org/10.3390/biom13030418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ebrahimpour-Malekshah R, Amini A, Mostafavinia A et al (2023) The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res. https://doi.org/10.1007/s00403-023-02563-z

    Article  PubMed  Google Scholar 

  7. Oyebode OA, Houreld NN (2022) Photobiomodulation at 830 nm stimulates migration, survival and proliferation of fibroblast cells. Diabetes Metab Syndr Obes 15:2885–2900. https://doi.org/10.2147/DMSO.S374649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heiskanen V, Hamblin MR (2018) Correction: Photobiomodulation: lasers vs light emitting diodes? Photochem Photobiol Sci 18(1):259–259. https://doi.org/10.1039/c8pp90049c

    Article  CAS  PubMed  Google Scholar 

  9. Serrage HJ, Cooper PR, Palin WM et al (2021) Photobiomodulation of oral fibroblasts stimulated with periodontal pathogens. Lasers Med Sci 36(9):1957–1969. https://doi.org/10.1007/s10103-021-03331-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Priglinger E, Maier J, Chaudary S et al (2018) Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med 12(6):1352–1362. https://doi.org/10.1002/term.2665

    Article  CAS  PubMed  Google Scholar 

  11. Mohamad SA, Milward MR, Hadis MA et al (2022) Blue light photobiomodulation of dental pulp cells. Laser Dent Sci 6(2):79–87. https://doi.org/10.1007/s41547-022-00152-3

    Article  Google Scholar 

  12. Rossi F, Magni G, Tatini F et al (2021) Photobiomodulation of human fibroblasts and keratinocytes with blue light: implications in wound healing. Biomedicines 9(1):41. https://doi.org/10.3390/biomedicines9010041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Higuchi A, Shen PY, Zhao JK et al (2011) Osteoblast differentiation of amniotic fluid-derived stem cells irradiated with visible light. Tissue Eng Part A 17(21–22):2593–2602. https://doi.org/10.1089/ten.tea.2011.0080

    Article  CAS  PubMed  Google Scholar 

  14. Wang YG, Huang YY, Wang Y et al (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6:33719. https://doi.org/10.1038/srep33719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mansano BSDM, da Rocha VP, Antonio EL et al (2021) Enhancing the therapeutic potential of mesenchymal stem cells with light-emitting diode: implications and molecular mechanisms. Oxid Med Cell Longev 2021:6663539. https://doi.org/10.1155/2021/6663539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  17. Samuel GO, Hoffmann S, Wright RA et al (2016) Guidance on assessing the methodological and reporting quality of toxicologically relevant studies: a sco** review. Environ Int 92–93:630–646. https://doi.org/10.1016/j.envint.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Huang Y-Y, Wang Y et al (2017) Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep 7(1):7781. https://doi.org/10.1038/s41598-017-07525-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tani A, Chellini F, Giannelli M et al (2018) Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study. Int J Mol Sci 19(7):1946. https://doi.org/10.3390/ijms19071946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu TT, Wu Y, Zhou XY et al (2019) Irradiation by blue light-emitting diode enhances osteogenic differentiation in gingival mesenchymal stem cells in vitro. Lasers Med Sci 34(7):1473–1481. https://doi.org/10.1007/s10103-019-02750-3

    Article  PubMed  Google Scholar 

  21. Schneider C, Dungel P, Priglinger E et al (2021) The impact of photobiomodulation on the chondrogenic potential of adipose-derived stromal/stem cells. J Photochem Photobiol B 221:112243. https://doi.org/10.1016/j.jphotobiol.2021.112243

    Article  CAS  PubMed  Google Scholar 

  22. Chen JQ, Sang YM, Li JY et al (2022) Low-level controllable blue LEDs irradiation enhances human dental pulp stem cells osteogenic differentiation via transient receptor potential vanilloid 1. J Photochem Photobiol B 233:112472. https://doi.org/10.1016/j.jphotobiol.2022.112472

    Article  CAS  PubMed  Google Scholar 

  23. Patel M, Moon HJ, Hong JH et al (2017) Chiro-optical modulation for NURR1 production from stem cells. ACS Chem Neurosci 8(7):1455–1458. https://doi.org/10.1021/acschemneuro.7b00136

    Article  CAS  PubMed  Google Scholar 

  24. Yuan Y, Yan GG, Gong R et al (2017) Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 43(1):237–246. https://doi.org/10.1159/000480344

    Article  CAS  PubMed  Google Scholar 

  25. Yang YY, Zhu TT, Wu Y et al (2020) Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers Med Sci 35(9):1981–1988. https://doi.org/10.1007/s10103-020-02995-3

    Article  PubMed  Google Scholar 

  26. Kulkarni S, Meer M, George R (2020) The effect of photobiomodulation on human dental pulp-derived stem cells: systematic review. Lasers Med Sci 35(9):1889–1897. https://doi.org/10.1007/s10103-020-03071-6

    Article  PubMed  Google Scholar 

  27. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361. https://doi.org/10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  28. Wu SA, Zhou FF, Wei YC et al (2014) Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Signal 20(5):733–746. https://doi.org/10.1089/ars.2013.5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  Google Scholar 

  30. Mohamad SA, Milward MR, Hadis MA et al (2021) Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 20(5):699–714. https://doi.org/10.1007/s43630-021-00047-5

    Article  CAS  PubMed  Google Scholar 

  31. Zhuang JJ, **a LP, Zou ZY et al (2022) Blue light induces ROS mediated apoptosis and degradation of AML1-ETO oncoprotein in Kasumi-1 cells. Med Oncol 39(5):52. https://doi.org/10.1007/s12032-022-01650-x

    Article  CAS  PubMed  Google Scholar 

  32. He MY, Yan GG, Wang Y et al (2021) Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR. J Cell Mol Med 25(11):4962–4973. https://doi.org/10.1111/jcmm.16412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoo JA, Yu E, Park SH et al (2020) Blue light irradiation induces human keratinocyte cell damage via transient receptor potential vanilloid 1 (TRPV1) regulation. Oxid Med Cell Longev 2020:8871745. https://doi.org/10.1155/2020/8871745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bergamo MT, Vitor LLR, Dionísio TJ et al (2021) Could the photobiomodulation therapy induce angiogenic growth factors expression from dental pulp cells? Lasers Med Sci 36(8):1751–1758. https://doi.org/10.1007/s10103-021-03291-4

    Article  PubMed  Google Scholar 

  35. Sharpe PT (2016) Dental mesenchymal stem cells. Development 143(13):2273–2280. https://doi.org/10.1242/dev.134189

    Article  CAS  PubMed  Google Scholar 

  36. Bakopoulou A, Leyhausen G, Yolk J et al (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56(7):709–721. https://doi.org/10.1016/j.archoralbio.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  37. Chan WCW, Tan ZJ, To MKT et al (2021) Regulation and role of transcription factors in osteogenesis. Int J Mol Sci 22(11):5445. https://doi.org/10.3390/ijms22115445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. García-Recio E, Costela-Ruiz VJ, Illescas-Montes R et al (2023) Modulation of osteogenic gene expression by human osteoblasts cultured in the presence of bisphenols BPF, BPS, or BPAF. Int J Mol Sci 24(5):4256. https://doi.org/10.3390/ijms24054256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren R, Guo J, Chen Y et al (2021) The role of Ca2+/calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 54(11):e13122. https://doi.org/10.1111/cpr.13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shi BM, Zhao J, Xu ZJ et al (2022) Chiral nanoparticles force neural stem cell differentiation to alleviate Alzheimer’s disease. Adv Sci (Weinh) 9(29):e2202475. https://doi.org/10.1002/advs.202202475

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the grants from the Sichuan Science and Technology Program (No. 2022YFS0634), the Sichuan Province Medical Research Project (No. S21015), and the Scientific Project of Southwest Medical University (No. 2021ZKMS013).

Author information

Authors and Affiliations

Authors

Contributions

H. L. wrote the manuscript and screened eligible studies; S. W. assisted in screening qualified studies and extracting relevant data; Y. H., Y. R., and J. L. assisted in screening eligible studies, extracting relevant data, and producing tables and figures; X. L. assisted in checking the language; Y. W. mainly designed the study, resolved the dispute, and revised the manuscript.

Corresponding author

Correspondence to Yao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hao Li and Shifen Wang contributed to the work equally and should be regarded as co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, S., Hui, Y. et al. The implication of blue light-emitting diode on mesenchymal stem cells: a systematic review. Lasers Med Sci 38, 267 (2023). https://doi.org/10.1007/s10103-023-03908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03908-w

Keywords

Navigation