Log in

Potential for fresh submarine groundwater occurrence in an arid Mediterranean region: the case of Gulf of Gabes, Tunisia

Potentiel de présence d’eaux souterraines douces sous-marines dans une région méditerranéenne aride: le cas du golfe de Gabès, Tunisie

El potencial de las aguas subterráneas dulces submarinas en una región mediterránea árida: el caso del Golfo de Gabes, Túnez

إمكانية تواجد مياه جوفية عذبة تحت البحر في مناطق البحر الأبيض المتوسط الجافة: مثال خليج قابس، تونس

干旱地中海区底下淡水出现的潜力:以突尼斯 Gabes湾为例 湾

Potencial para ocorrência de água subterrânea submarina doce em uma região árida do Mediterrâneo: o caso do Golfo de Gabes, Tunísia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Arid and semiarid zones, including the southern Mediterranean countries, are among the world’s most affected by water scarcity. Unconventional water resources, such as submarine fresh groundwater, may be key contributors to mitigate ongoing and future water crises for coastal regions and islands. In the Gulf of Gabes, Tunisia, several deep confined aquifers have been identified and the parts that are onshore have been well characterized. However, the offshore extension of these aquifers has been unexplored to date, except beneath Kerkenah and Djerba islands, where a number of exploitation wells are operating. In this work, the existing, but fragmented, geological, geophysical and hydrogeological data from both the marine and terrestrial sides of the Gulf of Gabes are synthesized for the first time in order to map the offshore extension of the deep aquifers and identify the quality of their groundwaters. Geological data confirmed the offshore continuity of the deep aquifers contained in the Miocene siliciclastic formations, particularly the Serravallian-Tortonian (ST) water-bearing horizon, on which the present research focuses more specifically, because of its wide extension and potential. In the study region, the ST aquifer is present onshore and is currently exploited in Kerkenah and Djerba islands. Offshore, the average thickness of the ST aquifer is ~200 m. Wireline log data suggest total porosity and salinity ranges of 30–36% and 5.5–7.5 g/L, respectively. These conditions make the offshore water-bearing horizon of potential interest for agriculture, industry and domestic purposes, including after adequate treatments such as desalination or dilution with freshwater.

Résumé

Les zones arides et semiarides, y compris les pays du sud de la Méditerranée, sont parmi les plus touchées par la pénurie d’eau. Les ressources en eau non conventionnelles, telles que les eaux souterraines douces sous-marines, peuvent contribuer de manière décisive à atténuer les crises de l’eau actuelles et futures dans les régions côtières et les îles. Dans le golfe de Gabès, en Tunisie, plusieurs aquifères captifs profonds ont été identifiés et les parties terrestres ont été bien caractérisées. Cependant, l’extension au large de ces aquifères n’a pas encore été explorée, sauf sous les îles de Kerkenah et de Djerba, où un certain nombre de puits d’exploitation sont en service. Dans ce travail, les données géologiques, géophysiques et hydrogéologiques existantes, mais fragmentées, de part et d’autre, marin et terrestre du Golfe de Gabès sont synthétisées pour la première fois afin de cartographier l’extension au large des aquifères profonds et d’identifier la qualité de leurs eaux souterraines. Les données géologiques ont confirmé la continuité vers le large des aquifères profonds contenus dans les formations siliciclastiques du Miocène, en particulier l’horizon aquifère Serravallien-Tortonien (ST), sur lequel la présente recherche se concentre plus particulièrement, en raison de sa large extension et de son potentiel. Dans la région étudiée, l’aquifère ST est présent à terre et est actuellement exploité dans les îles de Kerkenah et de Djerba. Au large, l’épaisseur moyenne de l’aquifère ST est d’environ 200 m. Les données des diagraphies suggèrent une porosité totale et une salinité respectivement de 30 à 36% et de 5.5 à 7.5 g/L. Ces conditions font que l’horizon aquifère offshore présente un intérêt potentiel pour l’agriculture, l’industrie et les usages domestiques, y compris après des traitements adéquats, tels que le dessalement ou la dilution avec de l’eau douce.

Resumen

Las zonas áridas y semiáridas, incluidos los países del sur del Mediterráneo, se encuentran entre las más afectadas del mundo por la escasez de agua. Los recursos hídricos no convencionales, como las aguas subterráneas dulces submarinas, pueden contribuir decisivamente a mitigar las crisis actuales y futuras de las regiones costeras y las islas. En el Golfo de Gabes (Túnez) se han identificado varios acuíferos confinados profundos y se han caracterizado correctamente sus partes terrestres. Sin embargo, la extensión offshore de estos acuíferos no se ha explorado hasta la fecha, excepto bajo las islas Kerkenah y Djerba, donde funcionan varios pozos de explotación. En este trabajo se sintetizan por primera vez los datos geológicos, geofísicos e hidrogeológicos existentes, aunque fragmentados, de las vertientes marina y terrestre del Golfo de Gabes, con el fin de cartografiar la extensión mar adentro de los acuíferos profundos e identificar la calidad de sus aguas subterráneas. Los datos geológicos confirman la continuidad mar adentro de los acuíferos profundos contenidos en las formaciones silicoclasticas del Mioceno, en particular el horizonte acuífero Serravalliano-Tortoniano (ST), en el que se centra más concretamente la presente investigación, debido a su vasta extensión y potencial. En la región estudiada, el acuífero ST esta presente en tierra firme y se explota actualmente en las islas de Kerkenah y Djerba. En alta mar, el espesor medio del acuífero ST es de unos 200 m. Los datos de los registros de la perforación indican una porosidad total y una salinidad que oscilan entre el 30% y el 36% y entre 5.5 y 7.5 g/L, respectivamente. Estas condiciones hacen que el horizonte acuífero offshore presente un interés potencial para la agricultura, la industria y los usos domésticos, incluso tras tratamientos adecuados, como la desalinizaciónón o la dilución con agua dulce.

الخلاصة

تعتبر المناطق الجافة وشبه الجافة، بما في ذلك دول جنوب البحر الأبيض المتوسط، من بين أكثر مناطق العالم تأثرًا بندرة المياه. قد تكون المصادر غير التقليدية للمياه، مثل المياه الجوفية العذبة تحت البحر، من الحلول الهامة للمساهمة في التخفيف من أزمات المياه الحالية والمستقبلية للمناطق الساحلية والجزر. في خليج قابس بتونس، تم تحديد العديد من الموائد المائية العميقة المحصورة وتم توصيف الأجزاء البرية منها بشكل جيد. ومع ذلك، لم يتم استكشاف الامتداد البحري لهذه الموائد حتى الآن، باستثناء منطقتي جزيرة قرقنة وجزيرة جربة، حيث توجد عدد من آبار استغلالها. في هذا العمل، يتم تجميع البيانات الجيولوجية والجيوفيزيائية والهيدروجيولوجية الموجودة، من الجهتين البحرية والبرية لخليج قابس من أجل رسم الامتداد الجغرافي للموائد المائية العميقة تحت البحر وتحديد جودة مياهها. أكدت البيانات الجيولوجية استمرارية الموائد العميقة الموجودة لا سيما في تكوينات السيليكلاستيك الميوسينية، ولا سيما الطبقة المائية سيرافاليان-تورتوني(ST)، والتي يركز البحث الحالي بشكل أكثر تحديدًا على امتدادها وإمكاناتها. في منطقة الدراسة، تتواجد الطبقة المائية ST على البر وكذلك يتم استغلالها حاليًا في جزيرتي قرقنة وجربة. تحت البحر، يبلغ متوسط سمك الطبقة المائية ST حوالي 200 متر. تشير بيانات تسجيلات الأسلاك الرفيعة إلى مسامية إجمالية ونسب ملوحة تتراوح بين 30-36٪ و 5.5-7.5 غ/لتر، على التوالي. تجعل هذه المعطيات الطبقة المائية تحت البحر مثيرة للاهتمام للاستخدامات الزراعية والصناعية والمنزلية، بما في ذلك بعد المعالجات المناسبة، مثل التحلية أو التخفيف باستخدام المياه العذبة.

摘要

包括南地中海国家的干旱和半干旱地区,是世界上受水资源稀缺影响最严重的地区之一。非传统水资源,例如海底地下淡水,可能是减缓沿海地区和岛屿持续和未来水危机的关键因素。在突尼斯的Gabes湾,已经确定了几个深层承压含水层,并且这些含水层的陆地部分已经得到很好的表征和研究。然而,这些含水层的海上延伸在迄今为止尚未被探索,除了在凯尔克纳和杰尔巴岛下方,在那里已经有了若干开采井。在这项工作中,首次综合了 Gabes 湾陆地和海洋两侧现有但零散的地质、地球物理和水文地质数据,以绘制深层含水层的海上延伸图,并确定其地下水的质量。地质数据证实了深层含水层在中新世硅质碎屑岩层中的海上连续性,特别是Serravallian-Tortonian(ST)含水层位,本研究更专注于该含水层位,因为其分布广泛和具有潜力。在研究区域内,ST含水层位陆上存在,并且目前在凯尔克纳和杰尔巴岛上进行开采。在海上,ST含水层的**均厚度约为200米。测井数据显示,总孔隙度和盐度范围分别为30–36%和5.5–7.5 g/L。这些条件使得海上含水层位在农业、工业和家庭用途方面具有潜在兴趣,包括经过适当处理,如淡化或淡水稀释后的用途。

Resumo

As zonas áridas e semiáridas, incluindo os países do sul do mediterrâneo, estão entre as mais afetadas pela escassez de água no mundo. Os recursos hídricos não convencionais, como as águas subterrâneas doces submarinas, podem ser os principais contribuintes para mitigar as crises hídricas atuais e futuras das regiões e ilhas costeiras. No Golfo de Gabes, na Tunísia, vários aquíferos profundos confinados foram identificados e as partes que estão em terra foram bem caracterizadas. No entanto, a extensão fora da costa desses aquíferos não foi explorada até o momento, exceto sobre as ilhas Kerkenah e Djerba, onde vários poços de exploração estão em operação. Neste trabalho, os dados geológicos, geofísicos e hidrogeológicos existentes, porém fragmentados, dos lados marinho e terrestre do Golfo de Gabes são sintetizados pela primeira vez para mapear a extensão fora da costa dos aquíferos profundos e identificar a qualidade de suas águas subterrâneas. Os dados geológicos confirmaram a continuidade dos aquíferos profundos fora da costa contidos nas formações siliciclásticas do Mioceno, particularmente o horizonte portador de água Serravallian-Tortonian (ST), no qual a presente pesquisa se concentra mais especificamente, devido à sua ampla extensão e potencial. Na região de estudo, o aquífero ST está presente em terra e atualmente é explorado nas ilhas Kerkenah e Djerba. Em alto mar, a espessura média do aquífero ST é de cerca de 200 m. Os dados de perfilagem sugerem porosidade total e faixas de salinidade de 30 a 36% e 5.5–7.5 g/L, respectivamente. Essas condições tornam o horizonte de água fora da costa de potencial interesse para agricultura, a indústria e fins domésticos, inclusive após tratamentos adequados, como dessalinização ou diluição com água doce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abid K, Zouari K, Dulinski M, Chkir N, Abidi B (2011) Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia). Hydrogeol J 19:415–427. https://doi.org/10.1007/s10040-010-0668-z

    Article  CAS  ADS  Google Scholar 

  • Abid K, Hadj Ammar F, Chkir N, Zouari K (2012) Relationship between Senonian and deep aquifers in southern Tunisia. Quatern Int 257:13–26. https://doi.org/10.1016/j.quaint.2011.09.022

    Article  Google Scholar 

  • Abidi B (2001) La nappe du Continental Intercalaire du Sud-Est Tunisien: analyse de la situation actuelle [The Continental Intercalary aquifer in South East Tunisia: analysis of the actual situation]. Report, General Directorate of Water Resources, Tunis Tunisia, 228 pp

  • Abidi B (2004) Caractéristique hydrodynamique et Géochimique de la Djeffara de Gabès [Hydrodynamic and geochemical characteristics of the Djeffara of Gabes]. Report, General Directorate of Water Resources), Tunis, Tunisia, 120 pp

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. AIME Petrol Trans 146:54–62

  • Arroyo J, Shirazi S (2012) Cost of brackish groundwater desalination in Texas. Texas Water Development Board, Austin

  • Asquith GB, Krygowski D, Gibson CR (2004) Basic well log analysis, vol 16. American Association of Petroleum Geologists, Tulsa, OK

  • Ayenew T, Demlie M, Wohnlich S (2008) Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J Afr Earth Sci 52(3):97–113

    Article  CAS  Google Scholar 

  • Bachtouli S, Comte J-C (2019) Regional-scale analysis of the effect of managed aquifer recharge on saltwater intrusion in irrigated coastal aquifers: long-term groundwater observations and model simulations in NE Tunisia. J Coastal Res 35(1):91–110. https://doi.org/10.2112/JCOASTRES-D-17-00174.1

    Article  CAS  Google Scholar 

  • Bakker M (2006) Analytic solutions for interface flow in combined confined and semi-confined, coastal aquifers. Adv Water Resour 29(3):417–425. https://doi.org/10.1016/j.advwatres.2005.05.009

    Article  CAS  ADS  Google Scholar 

  • Bédir M (1995) Mécanismes géodynamiques des bassins associes aux couloirs de coulissement de la marge Atlasique de la Tunisie. Seismo-stratigraphie, seismo-tectonique et implications pétrolières [Geodynamic mechanisms of the basins associated with the sliding corridors of the Atlas margin of Tunisia: seismo-stratigraphy, seismo-tectonics and petroleum implications]. PhD Thesis, University of Tunis II, Tunisia, 407 pp

  • Ben Ayed N (1986) Evolution tectonique de l’avant-pays de la chaîne alpine de Tunisie du début du Mésozoïque à l’Actuel [Tectonic evolution of the foreland of the Tunisian Alpine chain from the early Mesozoic to the actual]. PhD Thesis, University of Paris-11, France

  • Ben Baccar B (1982) Contribution à l’étude hydrogéologique de l’aquifère multicouche de Gabès-Sud [Contribution to the hydrogeological study of the Gabès-Sud multilayer aquifer]. PhD Thesis, University of Paris South (Orsay Central), 113 pp

  • Ben Ferjani A, Burollet PF, Mejri PF (1990) Petroleum geology of Tunisia. Memoire, Entreprise Tunisienne d’Activités Pétrolière, p 194 

  • Ben Jemaa F, Houcine I, Chahbani MH (1998) Desalination in Tunisia: past experience and future prospects. Desalination 116(2–3):123–133. https://doi.org/10.1016/S0011-9164(98)00189-1

    Article  CAS  Google Scholar 

  • Ben Othman S (1973) Le Sud tunisien (golfe de Gabès): hydrologie, sédimentologie, flore et faune [The Tunisian South (Gulf of Gabes): hydrology, sedimentology, flora and fauna]. Doctorate Thesis, University of Sciences Tunis, Tunisia, 166 pp

  • Benton MJ, Bouaziz S, Buffetaut E, Martill D, Ouaja M, Soussi M, Trueman CN (2000) Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern Tunisia. Paleogeogr Paleoclimatol Paleoecol 157:217–231

    Article  ADS  Google Scholar 

  • Bertoni C, Lofi J, Micallef A, Moe H (2020) Seismic reflection methods in offshore groundwater research. Geosciences 10(8):299. https://doi.org/10.3390/geosciences10080299

    Article  ADS  Google Scholar 

  • Biely A, Rakus M, Robinson P, Salaj J (1972) Essai de corrélation des formations Miocènes au Sud de la Dorsale Tunisienne [Attempt of Miocene formations correlation in south of the Tunisian Dorsal]. Notes Serv Géol Tunis 38:73–92

    Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the World Water Development Report. npj Clean Water 2:15. https://doi.org/10.1038/s41545-019-0039-9

  • Borghini M, Bryden H, Schroeder K, Sparnocchia S, Vetrano A (2014) The Mediterranean is becoming saltier. Ocean Sci J 10:693–700. https://doi.org/10.5194/os-10-693-2014

    Article  ADS  Google Scholar 

  • Bouaziz S (1995) Etude de la tectonique cassante dans la plateforme et l’Atlas sahariens (Tunisie méridionale): évolution des paléo-champs de contraintes et implications géodynamiques [Study of brittle tectonics in the Saharan platform and Atlas (southern Tunisia): evolution of stress paleofields and geodynamic implications]. PhD Thesis, University of Tunis II, Tunisia, 485 pp

  • Bouaziz S, Barrier E, Soussi MM, Turki MM, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253. https://doi.org/10.1016/S0040-1951(02)00370-0

    Article  ADS  Google Scholar 

  • Bouri S, Ben Dhia H (2010) A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: the Teboulba aquifer system (Tunisian Sahel). C R Geosci 342(1):60–74. https://doi.org/10.1016/j.crte.2009.10.008

    Article  Google Scholar 

  • Bratton JF (2007) The importance of shallow confining units to submarine groundwater flow. IAHS AISH Publ 312, IAHS, Wallingford, pp 28–34

  • Brown KM, Saffer DM, Bekins BA (2001) Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet Sci Lett 194(1–2):97–109. https://doi.org/10.1016/S0012-821X(01)00546-5

    Article  CAS  ADS  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. [Contribution to the stratigraphic study of central Tunisia]. Annales des Mines et de la Géologie (Tunisia), vol 18, Tunis, 350 pp

  • Burollet PF, Winnock E, Templeton RSM, Desprat RB (1979) Essai de synthèse: la mer pélagienne. Etude sédimentologique et écologique du Plateau tunisien et du Golfe de Gabès. [Tentative of synthesis: the Pelagic Sea. Sedimentological and Ecological Study of the Tunisian Plateau and the Gulf of Gabes]. Mediterranean Geol 6(1):321–328. https://doi.org/10.3406/geolm.1979.1097

  • Busson G (1967) Mesozoic of southern Tunisia. In: Ninth annual field conference of petroleum. Exploration Society of Libya, Tripoli, pp 131–152

  • Castany G (1951) Etude géologique de l’Atlas tunisien oriental [Geological study of the Tunisian Oriental Atlas]. Annales Mines et Géologie 8, vol 4, PhD Thesis, Paris, 632 pp

  • Castany G (1954) L’accident sud-tunisien, son âge et ses relations avec l’accident sud-atlasique d’Algérie [The South Tunisian accident, its age and its relationship with the South Atlas accident in Algeria]. C R Acad Sci 238:916–918

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325(5941):710–714. https://doi.org/10.1126/science.1172873

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cobbing J, Hiller B (2019) Waking a slee** giant: realizing the potential of groundwater in Sub-Saharan Africa. World Dev 122:597–613. https://doi.org/10.1016/j.worlddev.2019.06.024

    Article  Google Scholar 

  • Cohen CR, Schamel S, Boyd Kaygi P (1980) Neogene deformation in northern Tunisia: origin of the eastern atlas by microplate-continental collision. Geol Soc Am Bull 91(4):225–237

    Article  Google Scholar 

  • CRDA Sfax (2005) Programme intégré pour la mise en place en valeur des régions du Sahara et du Sud de la Tunisie, Lot°8, Etude des nappes aquifères de Sfax [Integrated program for the development of the regions of the Sahara and the South of Tunisia, Lot°8, Study of the aquifers of Sfax]. Report, Regional Agricultural Development Office of Sfax, Tunisia

  • Custodio E, Bruggeman GA (1987) Groundwater problems in coastal areas: a contribution to the International Hydrological Programme. Studies and Reports in Hydrology, UNESCO, Paris

  • DGRE (2018a) Annuaire de l’exploitation des nappes profondes [Yearbook of deep aquifer exploitation 2018a, Tunisia]. General Directorate of Water Resources, Tunis, Tunisia

  • DGRE (2018b) Annuaire piézométrique de la Tunisie [Yearbook of piezometry of Tunisia 2018b]. General Directorate of Water Resources, Tunis, Tunisia

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, pp 410–420

    Google Scholar 

  • Dona NC, Hangb NTM, Arakia H, Yamanishia H, Kogac K (2006) Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain. Agric Water Mang 84(3):295–304. https://doi.org/10.1016/j.agwat.2006.03.006

    Article  Google Scholar 

  • Edmunds WM, Guendouz A, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of the Southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6):805–822. https://doi.org/10.1016/S0883-2927(02)00189-0

    Article  CAS  ADS  Google Scholar 

  • EL Euch-EL Koundi N, Fery S, Ouja M, Ben Salem H, Zargouni F (2007) Sédimentologie et stratigraphie séquentielle de série miocène moyenne de cap bon, Tunisie nord-orientale. [Sedimentology and sequence stratigraphy of the Middle Miocene series of Cap Bon, north-eastern Tunisia]. Note du service géologique de la Tunisie, no. 75, Service géologique de la Tunisie, Tunis, Tunisia, pp 53–56

  • Glenton PN (1983) Fresh water distribution in the Upper Latrobe Group, Gippsland Basin. Internal report, Esso Exploration and Production Australia Inc. (unpublished, submitted to Victoria Department of Primary Industry)

  • Golden Software (2014) SURFER Version 12: reference manual, Golden Software, Golden, CO

  • Guler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Hydrogeol J 285:177–198. https://doi.org/10.1016/j.jhydrol.2003.08.019

    Article  CAS  Google Scholar 

  • Gustafson C, Key K, Evans RL (2019) Aquifer systems extending far offshore on the U.S. Atlantic margin. Sci Rep 9:8709. https://doi.org/10.1038/s41598-019-44611-7

  • Hamzaoui Azaza F, Tlili Zrelli B, Bouhlila R, Gueddari M (2013) An integrated statistical methods and modeling mineral–water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chem Spec Bioavailab 25(3):165–178

    Article  Google Scholar 

  • Henia L (1993) Climat et bilans de l’eau en Tunisie: essai de régionalisation climatique par les bilans hydriques [Climate and water balance in Tunisia: test of climatic regionalisation by water balances]. University of Tunis, Tunisia, 391 pp

  • Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica: a window to the subducting slab. Geology 32(3):201–204. https://doi.org/10.1130/G20119.1

    Article  CAS  ADS  Google Scholar 

  • Hong WL, Lepland A, Himmler T, Kim JH, Chand S, Sahy D, Solomon EA, Rae JWB, Martma T, Nam S-II, Knies J (2019) Discharge of meteoric water in the Eastern Norwegian Sea since the Last Glacial Period. Geophys Res Lett 46(14):8194–8204. https://doi.org/10.1029/2019GL084237

    Article  ADS  Google Scholar 

  • Jackson DB, Kauahikaua J (1987) Regional self-potential anomalies at Kilauea Volcano. USGS Professional Paper 1350:947–959

  • Jouet G, Berné S, Rabineau M, Bassetti MA, Bernier P, Dennielou B, Sierro FJ, Flores JA, Taviani M (2006) Shoreface migrations at the shelf edge and sea-level changes around the Last Glacial Maximum (Gulf of Lions, NW Mediterranean). Mar Geol 234(1–4):21–42. https://doi.org/10.1016/j.margeo.2006.09.012

    Article  ADS  Google Scholar 

  • Kamel S, Dassi L, Zouari K (2006) Hydrogeological and hydrochemical approach of hydrodynamic exchanges between deep and superficial aquifers of the Djérid basin Tunisia. Hydrol Sci J 51(4):713–730

    Article  CAS  Google Scholar 

  • Kammoun MA, Gassara S, Palmeri J, Ben Amar R, Deratani A (2020) Nanofiltration performance prediction for brackish water desalination: case study of Tunisian groundwater. Desalin Water Treat 181:27–39. https://doi.org/10.5004/dwt.2020.25100

    Article  CAS  Google Scholar 

  • Kastner M, Elderfield H, Martin J, Suess E, Kvenvolden K, Garrison R (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin: major constituents and strontium isotopes. Proc Ocean Drill Program 112:413–440. https://doi.org/10.2973/odp.proc.sr.112.144.1990

    Article  Google Scholar 

  • Kingumbi A, Bergaoui Z, Bourges J, Hubert P, Kallel R (2001) Etude de l’évolution des séries pluviométriques de la Tunisie. Hydrologie des Régions Méditerranéennes [Study of the evolution of rainfall series in central Tunisia]. Hydrologie des Régions Méditerranéennes, actes du séminaire UNESCO-IRD, 51, UNESCO, Paris, pp 341–345

  • Krijgsman W, Hilgen F, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655. https://doi.org/10.1038/23231

    Article  CAS  ADS  Google Scholar 

  • Knight AC, Werner AD, Morgan LK (2018) The onshore influence of offshore fresh groundwater. J Hydrol 561:724–736. https://doi.org/10.1016/j.jhydrol.2018.03.028

  • Kohout FA (1964) The flow of fresh water and salt water in the Biscayne aquifer of the Miami area, Florida. In: Cooper HH (ed) Sea water in coastal aquifers: relation of salt water to fresh groundwater. US Geol Surv Water Suppl Pap 1613-C, pp 12–33

  • Kooi H, Groen J (2001) Offshore continuation of coastal groundwater systems: predictions using sharp-interface approximations and variable-density flow modelling. J Hydrol 246(1–4):19–35. https://doi.org/10.1016/S0022-1694(01)00354-7

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292(5517):679–686. https://doi.org/10.1126/science.1059549

    Article  CAS  PubMed  ADS  Google Scholar 

  • Laurent A (1993) La gestion en bien commun des eaux souterraines: la nappe des sables astiens de Valras (Herault), une opération pilote en Languedoc-Roussillon [Common good management of groundwater: the Astian sand table of Valras (Herault)—a pilot operation in Languedoc-Roussillon]. PhD Thesis, Universite de Montpellier II, France

  • Lin IT, Wang CH, You CF, Lin S, Huang KF, Chen YG (2010) Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the **tung coastal zone, southern Taiwan. Mar Chem 122:51–58. https://doi.org/10.1016/j.marchem.2010.08.007

    Article  CAS  Google Scholar 

  • Lofi J, Inwood J, Proust JN, Monteverde D, Loggia D, Basile C, Otsuka H, Hayashi T, Stadler S, Mottl M, Fehr A, Pezard P (2013a) Fresh-water and salt-water distribution in passive margin sediments: insights from Integrated Ocean Drilling Program Expedition 313 on the New Jersey Margin. Geosphere 9(4):1009–1024. https://doi.org/10.1130/GES00855.1

    Article  ADS  Google Scholar 

  • Lofi J, Pezard P, Bouchette F, Raynal O, Sabatier P, Denchik N, Levannier A, Dezileau L, Certain R (2013b) Integrated Onshore‐offshore investigation of a Mediterranean layered coastal aquifer. Groundwater 51(4):550–561. https://doi.org/10.1111/j.1745-6584.2012.01011.x

  • Mamou A (1990) Caractéristiques et évaluation des ressources en eau du Sud tunisien [Characteristics and water resources evolution of Tunisian South]. PhD Thesis, University of Paris-South, France, 426 pp

  • Mamou A, Kassah A (2002) Eau et développement dans le Sud tunisien [Water and development in the Tunisian South]. Cahiers du CERES, série géographique no. 23, Tunis, Tunisia, 286 pp

  • Mannaï-Tayech B (2009) The lithostratigraphy of Miocene series from Tunisia, revisited. J Afr Earth Sc 54(3–4):53–56. https://doi.org/10.1016/j.jafrearsci.2009.02.003

    Article  Google Scholar 

  • Manzi V, Gennari R, Hilgen F, Krijgsman W, Lugli S, Roveri M, Sierro FJ (2013) Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25:315–322. https://doi.org/10.1111/ter.12038

    Article  ADS  Google Scholar 

  • Mekrazi AF (1975) Contribution à l’étude géologique et hydrogéologique de la région de Gabès Nord [Contribution to the Hydrogeological study of the Gabes North region]. PhD Thesis, University of Bordeaux I, France, 169 pp

  • Micallef A, Berndt C, Berndt J, Jegen M, Schwalenberg K, Wollatz Vogt M, Haroon A, Gazia X, Faghih Z, Spatola D, Worzewski T, Zerbst J, Marcon (2018) Cruise report RV Hercules [MARCAN Malta 2018], Valletta-Valletta, 1.-10.10.2018, 37 pp, University of Malta, Malta

  • Micallef A, Person M, Haroon A, Weymer BA, Jegen M, Schwalenberg K, Faghih Z, Duan S, Cohen D, Mountjoy JJ, Woelz S, Gable CW, Averes T, Kumar Tiwari A (2020) 3D characterization and quantification of an offshore freshened groundwater system in the Canterbury Bight. Nat Commun 11(1):1372. https://doi.org/10.1038/s41467-020-14770-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Micallef A, Person M, Berndt C, Bertoni C, Cohen D, Dugan B et al (2021) Offshore freshened groundwater in continental margins. Rev Geophys 59:e2020RG000706. https://doi.org/10.1029/2020RG000706

  • Middelburg JJ, de Lange GJ (1989) The isolation of Kau Bay during the last glaciation: direct evidence from interstitial water chlorinity. Neth J Sea Res 24(4):615–622. https://doi.org/10.1016/0077-7579(89)90138-5

    Article  Google Scholar 

  • Miller KG, Schmelz WJ, Browning JV, Kopp RE, Mountain GS, Wright JD (2020) Ancient sea level: as key to the future. Oceanography 33(2):32–41. https://www.jstor.org/stable/26937737. Accessed 15 Mar 2021

  • Moktar NB, Mannaï-Tayech B (2014) Palynology and sedimentology of the Miocene series in the north-east of Tunisia: the climatic and eustatic signature. Arab J Geosci 7:385–396. https://doi.org/10.1007/s12517-012-0808-y

    Article  Google Scholar 

  • Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88. https://doi.org/10.1146/annurev-marine-120308-081019

    Article  PubMed  Google Scholar 

  • Mora G (2005) Isotope-tracking of pore water freshening in the fore-arc basin of the Japan Trench. Mar Geol 219(2–3):71–79. https://doi.org/10.1016/j.margeo.2005.06.020

    Article  CAS  ADS  Google Scholar 

  • Muldoon M, Simo JA, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9:570–583

  • Mulligan A, Charette M (2009) Groundwater flow to the coastal ocean. Encyclopedia of Ocean Sciences. https://doi.org/10.1016/B978-012374473-9.00645-7

  • OSS (2003) Le système aquifère du Sahara septentrional. 3 vols: hydrogéologie, base de données et modèle mathématique [The Northern Sahara aquifer system, 3 vols: hydrogeology, data base of the mathematical model]. Sahara and Sahel Observatory (OSS), Tunis, Tunisia

  • OSS (2005) Water resources and management of transboundary aquifers in North Africa and the Sahel. ISARM-AFRICA, UNESCO IHP-IV, Series on Groundwater, no. 11, UNESCO, Paris, 134 pp

  • OSS (2006) Etude hydrogéologique du système aquifère de la Jeffara tuniso-libyenne [Hydrogeological study of Tunisian Libyan Jeffara aquifer]. Internal report, Sahara and Sahel Observatory, Tunis, Tunisia, 209 pp

  • Post VEA (2005) Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead? Hydrogeol J 13:120–123. https://doi.org/10.1007/s10040-004-0417-2

    Article  CAS  ADS  Google Scholar 

  • Post V, Groen J, Kooi H, Person M, Ge S, Edmunds WM (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504:71–78. https://doi.org/10.1038/nature12858

    Article  CAS  PubMed  ADS  Google Scholar 

  • Quiroga E, Bertoni C, Ruden F (2023) Deep low-salinity groundwater in sedimentary basins: petrophysical methods from a case study in Somalia. Hydrogeol J 31:685–705. https://doi.org/10.1007/s10040-022-02589-z

    Article  ADS  Google Scholar 

  • Ritchie H, Roser M (2017) Water use and stress. https://ourworldindata.org/water-use-stress. Accessed 12 Mar 2021

  • Robertson FN (1989) Groundwater geochemistry and information transfer in alluvial basins in Arizona. In: Simpson ES, Sharp JM (eds) Selected papers on hydrogeology. International Association of Hydrogeologists, Wallingford, England, pp 223–234

  • Rouatbi R (PhD Thesis, Montpellier, France 270 pp

  • Sahli H, Tagorti MA, Tlig S (2013) Groundwater hydrochemistry and mass Transfer in a stratified aquifer system (Jeffara-Gabès Basin, Tunisia). Larhyss J 10:95–108

    Google Scholar 

  • Schlumberger Well Surveying Corporation (1959) Log interpretation charts. Retrieved from the Digital Public Library of America. http://catalog.hathitrust.org/Record/102581194

  • Southgate HN, Möller NK (2000) Fractal properties of coastal profile evolution at Duck, North Carolina. J Geophys Res 105(C5):11489–11507. https://doi.org/10.1029/2000JC900021

    Article  ADS  Google Scholar 

  • Thomas AT, Reiche S, Riedel M, Clauser C (2019) The fate of submarine fresh groundwater reservoirs at the New Jersey Shelf, USA. Hydrogeol J 27:2673–2694. https://doi.org/10.1007/s10040-019-01997-y

    Article  CAS  ADS  Google Scholar 

  • Trabelsi R (2009) Caractérisation hydrogéologique et géochimique du système aquifère de la Djeffara, sud-est tunisien: modélisation et intrusion marine [Hydrogeological and geochemical characterization of the Djeffara aquifer system, South-East Tunisia: modeling and marine intrusion]. PhD Thesis, National Engineering School of Sfax (ENIS), Tunisia, 235 pp

  • Trabelsi R, Zairi M, Ben Dhia H (2007) Groundwater salinization of the Sfax superficial aquifer Tunisia. Hydrogeol J 15:1341–1355. https://doi.org/10.1007/s10040-007-0182-0

    Article  CAS  ADS  Google Scholar 

  • Tramblay Y, Ruelland D, Hanich L, Dakhlaoui H (2016) Sub-chapter 2.3.1. Hydrological impacts of climate change in North African countries. In: Moatti J, Thiébault S (eds) The Mediterranean region under climate change: a scientific update. IRD. https://doi.org/10.4000/books.irdeditions.23496

  • Varma S, Michael K (2012) Impact of multi-purpose aquifer utilization on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrogeol J 20:119–134

    Article  ADS  Google Scholar 

  • Water Reuse Association (WRA) (2012) Seawater desalination costs, January 2012. Water Reuse Association, Alexandria, VA

  • Weymer BA, Wernette PA, Everett ME, Pondthai P, Jegen M, Micallef A (2020) Multi-layered high permeability conduits connecting onshore and offshore coastal aquifers. Front Mar Sci 7:903. https://doi.org/10.3389/fmars.2020.531293

    Article  Google Scholar 

  • Williams JH, Lane JW, Singha K, Haeni FP (2002) Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California. US Geol Surv Water Resour Invest Rep 00–4083, 28 pp

  • Winsauer WO, Shearin HM, Masson PH, Williams M (1952) Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull 36(2):253–277

  • **ao H, Wang D, Medeiros SC, Hagen SC, Hall CR (2018) Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida. Sci Total Environ 630:211–221. https://doi.org/10.1016/j.scitotenv.2018.02.184

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zamrsky D, Karssenberg ME, Cohen KM, Bierkens MFP, Oude Essink GHP (2020) Geological Heterogeneity of Coastal Unconsolidated Groundwater Systems Worldwide and Its Influence on Offshore Fresh Groundwater Occurrence. Front Earth Sci p 7. https://doi.org/10.3389/feart.2019.00339

  • Zargouni F (1985) Tectonique de l’Atlas méridional de Tunisie, évolution géométrique et cinematique des structures en zone de cisaillement [Tectonics of the Southern Atlas of Tunisia, geometric and kinematic evolution of structures in shear zone]. PhD Thesis, University of Louis Pasteur Strasbourg, France, 304 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Zairi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachtouli, S., Abidi, M., Comte, JC. et al. Potential for fresh submarine groundwater occurrence in an arid Mediterranean region: the case of Gulf of Gabes, Tunisia. Hydrogeol J 32, 359–378 (2024). https://doi.org/10.1007/s10040-023-02716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02716-4

Keywords

Navigation