Log in

Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia

Impact de l’utilisation multiple d’un aquifère à système de flux de densité variable dans le Gippsland Basin, Australie

Impacto de la utilización de un acuífero multipropósito en un sistema de flujo de aguas subterráneas de densidad variable en la cuenca Gippsland, Australia

澳大利亚Gippsland盆地多功能含水层利用对变密度地下水流系统的影响

Impacte de multi-utilizações de águas subterrâneas num sistema aquífero com fluxos dependentes de densidade variável na Bacia de Gippsland, Austrália

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Latrobe aquifer in the Gippsland Basin in southeastern Australia is a prime example for emerging resource conflicts in Australian sedimentary basins. The Latrobe Group forms a major freshwater aquifer in the onshore Gippsland Basin, and is an important reservoir for oil and gas in both onshore and offshore parts of the basin. The Latrobe Group and overlying formations contain substantial coal resources that are being mined in the onshore part of the basin. These may have coal-seam-gas potential and, in addition, the basin is considered prospective for its geothermal energy and CO2 storage potential. The impacts of groundwater extraction related to coal-mine dewatering, public water supply, and petroleum production on the flow of variable-density formation water has been assessed using freshwater hydraulic heads and impelling force vectors. Groundwater flows from the northern and western edges towards the central part of the basin. Groundwater discharge occurs mainly offshore along the southern margin. Post-stress hydraulic heads show significant declines near the petroleum fields and in the coal mining areas. A hydrodynamic model of the Latrobe aquifer was used to simulate groundwater recovery in the Latrobe aquifer from different scenarios of cessation of groundwater and other fluid extractions.

Résumé

Le Latrobe aquifer dans le Gippsland Basin, Sud de l’Australie, est un exemple de premier ordre des conflits émergeants relatifs à une ressource. Le Latrobe Group forme un aquifère d’eau douce côtier majeur du Gippsland Basin, lequel est aussi un important réservoir d’huile et de gaz, à fois terrestre et marin. Le Latrobe Group et les formations sus-jacentes contiennent de substantielles ressources de charbon, qui sont en cours d’exploitation dans la partie terrestre du bassin. Celles-ci peuvent avoir un potentiel en gaz de houille et, de plus, le bassin est considéré comme future source d’énergie géothermique et réservoir potentiel de stockage de CO2. Les impacts du pompage de l’eau de nappe en relation avec l’exhaure de la mine de charbon, l’alimentation du réseau de distribution public, et la production de pétrole sur le flux d’eau de densité variable de la formation ont été estimés en utilisant potentiels hydrauliques eau douce et vecteurs force motrice. L’eau de nappe s’écoule des bordures Nord et Ouest vers la partie centrale du bassin. La décharge a principalement lieu en mer, le long de la bordure Sud. Les potentiels hydrauliques post-stress montrent des diminutions significatives près des champs pétroliers et dans les zones d’extraction houillère. Un modèle hydrodynamique du Latrobe aquifer a été utilisé pour simuler la remontée de la nappe suivant différents scénarios d’arrêt d’extraction de l’eau et autres fluides.

Resumen

El acuífero Latrobe en la cuenca de Gippsland en el sudeste de Australia es un excelente ejemplo del surgimiento de conflictos en los recursos en cuenca sedimentarias australianas. El Grupo Latrobe forma un gran acuífero de agua dulce en la zona costera terrestre de la cuenca Gippsland, y es un reservorio importante de petróleo y gas tanto costa adentro como como costa afuera de la cuenca. El Grupo Latrobe y las formaciones suprayacentes contienen sustanciales recursos de carbón que están siendo explotados en la parte continental de la cuenca. Estos pueden tener vetas potenciales gas de carbón y, en adición, la cuenca es considerada como prospectiva por su energía geotermal y potencial almacenamiento de CO2. Los impactos de la extracción de agua subterránea relacionados con el drenaje de la mina de carbón, abastecimiento de agua potable, y la producción de petróleo sobre el flujo de agua de formación de densidad variable han sido evaluados usando las cargas hidráulicas del agua dulce y los vectores de las fuerzas impulsantes. El agua subterránea fluye desde los límites norte y oeste hacia la parte central de la cuenca. La descarga de agua subterránea ocurre principalmente costa afuera a lo largo del margen sur. Las cargas hidráulicas post stress muestran una disminución significativa cerca de los campos de petróleo y en el área de minas de carbón. Se usó un modelo hidrodinámico del acuífero Latrobe para simular la recuperación del agua subterránea a partir de diferentes escenarios de cesación de las extracciones de agua subterránea y otros fluidos.

摘要

澳大利亚东南部Gippsland盆地Latrobe含水层是澳大利亚沉积盆地新兴资源争论的首要例子。Latrobe Group在岸上的Gippsland盆地内形成了一个较大的淡水含水层,对盆地岸上和**海部分的油气是重要的储库。Latrobe Group以及上覆的地层包含大量的煤炭资源,盆地岸上部分的煤炭**在开采。此处还有煤层天然气的潜力,此外,盆地也被认为具有未来的地热能开采和CO2封存的潜力。抽取地下水对变密度地层水的水流的影响与煤矿脱水、公共给水和采油相关,并利用淡水水头和驱动力矢量进行估算。地下水从北侧和西侧边缘朝盆地中心运移。地下水排泄主要发生在沿南部边缘的**海。靠**采油和采矿点的应激后水头显著下降。Latrobe含水层的水动力模型是用于模拟Latrobe含水层从停止地下水和其它液体抽取的不同场景中的地下水恢复。

Resumo

O aquífero Latrobe, na Bacia de Gippsland, sudeste da Austrália, é um excelente exemplo de conflitos na gestão dos recursos hídricos em bacias sedimentares australianas. O Grupo Latrobe forma um importante aquífero de água doce na parte terrestre da Bacia Gippsland e é um importante reservatório de petróleo e gás em partes terrestres e submarinas da bacia. O Grupo Latrobe e as formações sobrejacentes contêm substanciais recursos de carvão, os quais se encontram em exploração na parte terrestre da bacia. Estes podem ter potencialmente gás de hulha. Além disso, a bacia é considerada uma reserva potencial de energia geotérmica e tem potencial para armazenamento de CO2. Os impactes da extração de águas subterrâneas relacionados com a drenagem na mineração de carvão, com o abastecimento público de água e com a produção de petróleo no fluxo de água subterrânea de formação com densidade variável foram avaliados usando potenciais de água doce e respectivos gradientes (forças impulsionadoras). A água subterrânea flui a partir das fronteiras norte e oeste em direcção à parte central da bacia. A descarga das águas subterrâneas ocorre principalmente no mar, ao longo da margem sul. Os gradientes pós-extração indicam rebaixamentos significativos perto dos campos de petróleo e nas áreas de mineração de carvão. Foi utilizado um modelo hidrodinâmico do aquífero Latrobe para simular a recuperação das águas subterrâneas nesse aquífero a partir de diferentes cenários de cessação da exploração das águas subterrâneas e de outros fluidos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bachu S (1995) Flow of variable-density formation water in deep slo** aquifers: review of methods of representation with case studies. J Hydrol 164:19–38

    Article  Google Scholar 

  • Bachu S, Michael K (2002) Flow of variable-density formation water in deep slo** aquifers: minimizing the error in representation and analysis when using hydraulic head distributions. J Hydrol 259:49–65

    Article  Google Scholar 

  • Davies PB (1987) Modeling areal, variable-density, ground-water flow using equivalent freshwater head analysis of potentially significant errors. Proceedings of the NWWA-IGWMC Conference Solving Groundwater problems with Models. 10–12 February 1987, Denver, CO. National Water Well Association, Dublin, OH, pp 888–903

  • Desbrandes R (1985) Encyclopedia of well logging. Institute Francais du Petrole Publications, Paris, 587 pp

  • Gibson-Poole CM, Svendsen L, Underschultz J, Watson MN, Ennis-King J, van Ruth PJ, Nelson EJ, Daniel R, Cinar Y (2008) Site characterisation of a basin-scale CO2 geological storage system: Gippsland Basin, southeast Australia. Environ Geol 54:1583–1606

    Article  Google Scholar 

  • Goldie Divko LM, O’Brien GW, Harrison ML, Hamilton PJ (2010) Evaluation of the regional top seal in the Gippsland Basin: implications for geological carbon storage and hydrocarbon prospectivity. APPEA J 50:463–486

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92: 121 pp

  • Hill PJ, Exon NF, Keene JB, Smith SM (1998) The continental margin of east Tasmania and Gippsland: structure and development using new multibeam sonar data. Explor Geophys 29:410–419

    Article  Google Scholar 

  • Jorgensen DG, Gogel T, Signor DC (1982) Determination of flow in aquifers containing variable-density water. Groundw Monit Rev 2:40–45

    Article  Google Scholar 

  • Kuttan K, Kulla JB, Neumann RG (1986) Freshwater influx in the Gippsland Basin: impact on formation evaluation, hydrocarbon volumes, and hydrocarbon migration. Aust Petro Expl Assoc J 62:242–249

    Google Scholar 

  • Lusczynski NJ (1961) Head and flow of ground water of variable density. J Geophys Res 66:4247–4255

    Article  Google Scholar 

  • Nahm GY (2002) The hydrogeology of the Gippsland Basin and its role in the genesis and accumulation of petroleum. PhD Thesis, University of Melbourne, Australia, 295 pp

  • Oberlander PL (1989) Fluid density and gravitational variations in deep boreholes and their effect on fluid potential. Ground Water 23:341–350

    Article  Google Scholar 

  • Post V, Kooi H, Simmons C (2007) Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45:664–671

    Article  Google Scholar 

  • Schaeffer J (2008) Scaling point based aquifer data for develo** regional groundwater models: application to the Gippsland groundwater system. PhD Thesis, University of Melbourne, Australia, 331 pp and appendices

  • Schlumberger (2009) Log interpretation charts. 2009 Edition. http://www.archive.org/details/2009EditionLogInterpretationCharts. 293 pp

  • Walker G, Mollica F (1990) Review of the groundwater resources in the South East Region. Report No. 54, Water Resources Management Series, Department of Water Resources, Victoria, 68 pp

Download references

Acknowledgements

The authors wish to acknowledge the advice, information and directions received from G. O’Brien, P. Tingate, L. Goldie Divko from GeoScience Victoria, and J. Underschultz from CSIRO. The onshore groundwater monitoring data were kindly provided by the Victoria Department of Sustainability and Environment, Hazelwood Power and GHD Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, S., Michael, K. Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrogeol J 20, 119–134 (2012). https://doi.org/10.1007/s10040-011-0800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0800-8

Keywords

Navigation