Log in

Configurational mechanics in granular media

  • Research
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular materials belong to the class of complex materials within which rich properties can emerge on large scales despite a simple physics operating on the microscopic scale. Most notable is the dissipative behaviour of such materials mainly through non-linear frictional interactions between the grains which go out of equilibrium. A whole variety of intriguing features thus emerges in the form of bifurcation modes in either patterning or un-jamming. This complexity of granular materials is mainly due to the geometrical disorder that exists in the granular structure. Diverse configurations of grain collections confer to the assembly the capacity to deform and adapt itself against different loading conditions. Whereas the incidence of frictional properties in the macroscopic plastic behavior has been well described for long, the role of topological reorganizations that occur remains much more elusive. This paper attempts to shed a new light on this issue by develo** ideas following the configurational entropy concept within a proper statistical framework. As such, it is shown that contact opening and closing mechanisms can give rise to a so-called configurational dissipation which can explain the irreversible topological evolutions that granular materials undergo in the absence of frictional interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Adam, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  2. Baule, A., Morone, F., Herrmann, H.J., Makse, H.A.: Edwards statistical mechanics for jammed granular matter. Rev. Mod. Phys. 90, 015006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Been, K., Jefferies, M., Hachey, J.: The critical state of sands. Geotechnique 41, 365 (1991)

    Article  Google Scholar 

  4. Bénard, H.: Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chim. Phys. 7(23), 62–144 (1901)

    Google Scholar 

  5. Benfenati, F., Beretta, G.P.: Ergodicity, maximum entropy production, and steepest entropy ascent in the proofs of Onsager’s reciprocal relations. J. Non-Equilib. Thermodyn. 43(2), 101–110 (2018). https://doi.org/10.1515/jnet-2017-0054

    Article  ADS  Google Scholar 

  6. Bi, D., Henkes, S., Daniels, K.E., Chakraborty, B.: The statistical physics of athermal materials. Annu. Rev. Condensed Matter Phys. 6, 63–83 (2015)

    Article  ADS  Google Scholar 

  7. Blumenfeld, R., Edwards, S.: Granular statistical mechanics – a personal perspective. Eur. Phys. J. Spec. Top. 223, 2189–2204 (2014)

    Article  Google Scholar 

  8. Blumenfeld, R., Edwards, S.F.: Granular entropy: explicit calculations for planar assemblies. Phys. Rev. Lett. 90, 114303 (2003)

    Article  ADS  Google Scholar 

  9. Boltzmann, L.: Uber die Beziehung eines allgemeine mechanischen Satzes zum zweiten Hauptsatze der Warmetheorie. Sitzungsberichte der Akademie der Wissenschaften, Wien, II, 75, 67–73 [English translation in: S.G. Brush, Kinetic theory, Vol. 2, Irreversible processes, pp. 188–193, Pergamon Press, Oxford (1966). (1877)

  10. Casimir, H.: On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343 (1945)

    Article  ADS  Google Scholar 

  11. Clerc, A., Wautier, A., Bonelli, S., Nicot, F.: Meso-scale signatures of inertial transitions in granular materials. Granul. Matter 23(2), 24–28 (2021)

    Article  Google Scholar 

  12. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  13. Das, S., Ghosh, S., Gupta, S.: State-dependent driving: a route to non-equilibrium stationary states. Proc. R. Soc. A. 478, 20210885 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  14. Deng, N., Wautier, A., Thiery, Y., Yin, Z.Y., Hicher, P.Y., Nicot, F.: On the attraction power of critical state in granular materials. J. Mech. Phys. Solids 149, 104300 (2021)

    Article  MathSciNet  Google Scholar 

  15. Deng, N., Wautier, A., Tordesillas, A., Thiery, Y., Yin, Z.Y., Hicher, P.Y., and Nicot, F.: Lifespan dynamics of cluster conformations in stationary regimes in granular materials. Phys. Rev./E, 105, 014902 (2022)

  16. De Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Gouttes, bulles, perles et ondes. Belin Ed. (2002)

  17. Desrues, J., Andò, E.: Strain localisation in granular media. Comptes Rendus. Phys. Acad. Sci. (Paris) 16(1), 26–36 (2015)

    Article  ADS  Google Scholar 

  18. Dewar, R.C.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38(21), L371–L381 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Doig, A.J., Sternberg, M.J.E.: Side-chain conformational entropy in protein folding. Protein Sci. 4, 2247–2251 (1995)

    Article  Google Scholar 

  20. Duran, J.: Sands, powders, and grains: an introduction to the physics of granular material. Springer-Verlag, New York (2000)

    Book  Google Scholar 

  21. Edwards, S.F., Oakeshott, R.B.S.: Theory of powders. Phys. A 157(3), 1080–1090 (1989)

    Article  MathSciNet  Google Scholar 

  22. Embacher, P., Dirr, N., Zimmer, J., Reina, C.: Computing diffusivities from particle models out of equilibrium. Proc. R. Soc. A. 474, 20170694 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Evans, D., Searle, D.: The fluctuation theorem. Adv. Phys. 51(7), 1529–1585 (2002)

    Article  ADS  Google Scholar 

  24. Gibbs, J.H., DiMarzio, E.A.: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373 (1958)

    Article  ADS  Google Scholar 

  25. Gibbs, J.W.: Elementary principles in statistical mechanic. Charles Scribner’s Sons Publ, New York (1902)

    Google Scholar 

  26. Glansdorff, P., Prigogine, I.: Sur les propriétés différentielles de la production d’entropie. Physica 20(7–12), 773–780 (1954)

    Article  ADS  Google Scholar 

  27. Glansdorff, P., Prigogine, I.: Generalised entropy production and hydrodynamic stability. Phys. Lett. 7(4), 243–244 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  28. Glansdorff, P., Prigogine, I.: On a general evolution criterion in macroscopic physics. Physica 30(2), 351–374 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  29. Glansdorff, P., Prigogine, I.: Thermodynamic theory of structure, stability and fluctuations. Wiley-Intersçience, N.Y. (1971)

  30. Goldhirsch, I.: Introduction to granular temperature. Powder Technol. 182(2), 130–136 (2008)

    Article  Google Scholar 

  31. Hudson, J.L., Mankin, J.C.: Chaos in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 74(11), 6171–6177 (1981)

    Article  ADS  Google Scholar 

  32. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquid, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  33. Janečka, A., Pavelka, M.: Gradient dynamics and entropy production maximization. J. Non-Equilib. Thermodyn. 43(1), 1–19 (2018). https://doi.org/10.1515/jnet-2017-0005

    Article  ADS  Google Scholar 

  34. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  35. Jaynes, E.T.: Papers on probability, statistics and statistical physics. Edited by R. D. Rosenkrantz, D. Reidel Publishing Co., Dordrecht, Holland. (1983)

  36. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 43 (1999)

    Article  ADS  Google Scholar 

  37. Kuhn, M.R.: The critical state of granular media: convergence, stationarity and disorder. Géotechnique 66, 902 (2016)

    Article  Google Scholar 

  38. Kuhn, M.R.: Maximum disorder model for dense steady-state flow of granular materials. Mech. Mater. 93, 63 (2016)

    Article  ADS  Google Scholar 

  39. Ledesma-Durán, A., Santamaría-Holek, I.: Energy and entropy in open and irreversible chemical reaction–diffusion systems with asymptotic stability. J. Non-Equilib. Thermodyn. 47(3), 311–328 (2022). https://doi.org/10.1515/jnet-2022-0001

    Article  ADS  Google Scholar 

  40. Liu, A., Nagel, S.: Jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  ADS  Google Scholar 

  41. Liu, J., Nicot, F., Zhou, W.: Sustainability of internal structures during shear band forming in 2D granular materials. Powder Technol. 338, 458–470 (2018)

    Article  Google Scholar 

  42. Liu, J., Wautier, A., Bonelli, S., Nicot, F., Darve, F.: Macroscopic softening in granular materials from a mesoscale perspective. Int. J. Solids Struct. 93–194, 222–238 (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.022

    Article  Google Scholar 

  43. Lucarini, V., Pavliotis, G.A., Zagli, N.: Response theory and phase transitions for the thermodynamic limit of interacting identical systems. Proc. R. Soc. A 476(2244), 20200688 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. Maxwell, J.C.: Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. London, Edinburgh, Dublin Phil. Mag. J. Sci. 19, 19–32 (1860)

    Article  Google Scholar 

  45. Nicolis, G., and Prigogine, I.: Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. New York, John Wiley & Sons. (1977)

  46. Nicot, F., Darve, F.: Basic features of plastic strains: from micro-mechanics to incrementally nonlinear models. Int. J. Plast. 23, 1555–1588 (2007)

    Article  Google Scholar 

  47. Nicot, F., Wang, X., Wautier, A., Wan, R., Darve, F.: Shear banding as a dissipative structure from a thermodynamic viewpoint. J. Mech. Phys. Solids 179, 105394 (2023)

    Article  MathSciNet  Google Scholar 

  48. Onsager, L.: Reciprocal relations in irreversible processes (I). Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  49. Parisi, G. Disordered systems and neural networks. (2012). ar**v:1201.5813 [cond-mat.dis-nn]. https://doi.org/10.48550/ar**v.1201.5813

  50. Parisi, G., Procaccia, I., Rainone, C., Singh, M.: Shear bands as manifestation of a criticality in yielding amorphous solids. Proc. Natl. Acad. Sci. U. S. A. 114, 5577–5582 (2017).https://doi.org/10.1073/pnas.1700075114

  51. Peters, J.F., Muthuswamy, M., Wibowo, J., Tordesillas, A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005)

    Article  ADS  Google Scholar 

  52. Porporato, A., Hooshyar, M., Bragg, A.D., Katul, G.: Fluctuation theorem and extended thermodynamics of turbulence. Proc. R. Soc. A. 476, 20200468 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  53. Pouragha, M., Wan, R.: μ-GM: A purely micromechanical constitutive model for granular materials. Mech. Mater. 126, 57–74 (2021)

    Article  Google Scholar 

  54. Preisler, Z., Dijkstra, M.: Configurational entropy and effective temperature in systems of active Brownian particles. Soft Matter 12, 6043–6048 (2016)

    Article  ADS  Google Scholar 

  55. Prigogine, I., Lefever, R.: Symmetry breaking instabilites in dissipative systems. J. Chem. Phys. 48(4), 1695–1700 (1968)

    Article  ADS  Google Scholar 

  56. Prigogine, I., Lefever, R.: Stability and Self-organization in open systems. Adv. Chem. Phys. 29, 1–28 (1975)

    Google Scholar 

  57. Pucilowski, S., Tordesillas, A.: Rattler wedging and force chain buckling: Metastable attractor dynamics of local grain rearrangements underlie globally bistable shear banding regime. Gran. Matter 22, 18 (2020)

    Article  Google Scholar 

  58. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.-J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61 (1998)

    Article  ADS  Google Scholar 

  59. Rayleigh, J.W.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside. London, Edinburgh, Dublin Phil. Mag. J. Sci. Sixth Ser. 32(192), 529–546 (1916)

    Google Scholar 

  60. Roscoe, K.H., Schofield, A., Wroth, A.P.: On the yielding of soils. Geotechnique 8, 22 (1958)

    Article  Google Scholar 

  61. Serdyukov, S.I.: The Onsager-Machlup theory of fluctuations and time-dependent generalized normal distribution. J. Non-Equilib. Thermodyn. 48(3), 243–254 (2022). https://doi.org/10.1515/jnet-2022-0071

    Article  ADS  Google Scholar 

  62. Serero, C., Goldenberg, S., Noskowicz, H., Goldhirsch, I.: The classical granular temperature and slightly beyond. Powder Technol. 182(2), 257–271 (2008)

    Article  Google Scholar 

  63. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  64. Silbert, L.E.: Temporally heterogeneous dynamics in granular flows. Phys. Rev. Lett. 94(9), 098002 (2005)

    Article  ADS  Google Scholar 

  65. Smilauer, V., et al.: Yade Documentation 2nd ed (The Yade Project, 2015). http://yade-dem.org/doc/. (2015)

  66. Sun, X., Kob, W., Blumenfeld, R., Tong, H., Wang, Y., Zhang, J.: Friction-controlled entropy-stability competition in granular systems. Phys. Rev. Lett. 125, 268005 (2020)

    Article  ADS  Google Scholar 

  67. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag. 87(32), 4987–5016 (2007)

    Article  ADS  Google Scholar 

  68. Tordesillas, A., Walker, D.M., Froyland, G., Zhang, J., Behringer, R.P.: Transition dynamics and magic-number-like behavior of frictional granular clusters. Phys. Rev. E 86, 011306 (2012)

    Article  ADS  Google Scholar 

  69. Veveakis, E., Regenauer-Lieb, K.: Review of extremum postulates. Curr. Opin. Chem. Eng. 7(C), 40–46 (2015)

    Article  Google Scholar 

  70. Walker, D.M., Tordesillas, A., Brodu, N., Dijksman, J.A., Behringer, R.P., Froyland, G.: Self-assembly in a near frictionless granular material: Conformational structures and transitions in uniaxial cyclic compression of hydrogel spheres. Soft Matter 11, 2157 (2015)

    Article  ADS  Google Scholar 

  71. Walker, D.M., Tordesillas, A., Brodu, N., Dijksman, J.A., Behringer, R.P., Froyland, G.: Self-assembly in a near-frictionless granular material: Conformational structures and transitions in uniaxial cyclic compression of hydrogel spheres. Soft Matter 11, 2157 (2015)

    Article  ADS  Google Scholar 

  72. Wan, R., Nicot, F., Darve, F.: Failure in geomaterials, a contemporary treatise. Ed. ISTE-Wiley, 222 pages. (2017)

  73. Wang, X., Liu, Y, Nicot, F.: Energy processes and phase transition in granular assemblies. Int. J. Solids Struct.under review 112634, in press (2023). https://doi.org/10.1016/j.ijsolstr.2023.112634

  74. Wanjura, C.C., Gago, P., Matsushima, T., Blumenfeld, R.: Structural evolution of granular systems: theory. Gran. Matter 22(91) (2020). https://doi.org/10.1007/s10035-020-01056-4

  75. Ziegler, H.: An introduction to thermomechanics. North Holland, Amsterdam (1983)

    Google Scholar 

  76. Zhu, H., Nguyen, H.N.G., Nicot, F., Darve, F.: On a common critical state in localized and diffuse failure modes. J. Mech. Phys. Solids 95, 112–131 (2016). https://doi.org/10.1016/j.jmps.2016.05.026

    Article  ADS  Google Scholar 

  77. Zhu, H., Nicot, F., Darve, F.: Meso-structure organization in two-dimensional granular materials along biaxial loading path. Int. J. Solids Struct. 96, 25–37 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the CNRS International Research Network GeoMech for having offered the opportunity to make this project possible through long-standing collaboration of all the authors (http://gdrmege.univ-lr.fr/).

Funding

The authors declare that they do not have received any funding.

Author information

Authors and Affiliations

Authors

Contributions

F.N. wrote the main manuscript.

M.L. run the DEM simulations.

A.W., R.W. and F.D. reviewed the manuscript.

Corresponding author

Correspondence to Francois Nicot.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Positiveness of the configurational affinity \({A}_{i,j}\)

The configurational affinity \({A}_{i,j}\) is defined by the relation \({A}_{i,j}=k \theta \text{ln}\frac{(i-1)!}{(j-1)!(i+1-j)!}\). The combinatory term in the logarithm function can be transformed as follows:

$$\frac{(i-1)!}{(j-1)!(i+1-j)!}=\left(\frac{i-1}{j-1}\right)\left(\frac{i-2}{j-2}\right)\cdots \left(\frac{i-(j-2)}{2}\right)$$
(37)

As \(i\ge j+1\), the quotients appearing in Eq. (37) are all strictly greater than 1. Thus:

$$\frac{(i-1)!}{(j-1)!(i+1-j)!}>1$$
(38)

which proves the strict positiveness of all terms\({A}_{i,j}\), for any couple \(\left(i,\;j\right)\) such that \(i\in \left\{4,\dots ,m\right\}\) and \(j<i\)

Appendix 2

Derivation of Eq. (20)

Starting from Eq. (18), and combining with Eq. (15) gives:

$${\dot{S}}^{conf}=-\frac{1}{\theta }\sum_{i=4}^{m}\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{i}-{\mu }_{j}-{\mu }_{i+2-j}\right){\dot{N}}_{i,j}$$
(39)

which can be rearranged as:

$$\begin{array}{c}{\dot{S}}^{conf}=-\frac{1}{\theta }\sum_{i=4}^{m-1}\left({\mu }_{i}\left(\sum_{j=3}^{\text{int}(i/2)+1}{\dot{N}}_{i,j}-\sum_{j=i+1}^{m}\left(1+{\delta }_{i,j-i+2}\right){\dot{N}}_{j,i}\right)\right)\\ +\frac{1}{\theta }\sum_{i=4}^{m-1}\left(\left(\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}-\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j-i+2}\right){\dot{N}}_{j,i}\right)\right)\\ +\frac{1}{\theta }\sum_{j=3}^{\text{int}(m/2)+1}\left({\mu }_{j}+{\mu }_{m+2-j}-{\mu }_{m}\right){\dot{N}}_{m,j}\end{array}$$
(40)

Taking advantage of Eq. (19b), Eq. (40) can be rewritten as:

$$\begin{array}{c}{\dot{S}}^{conf}=-\frac{1}{\theta }\sum_{i=4}^{m-1}{\mu }_{i}{\dot{N}}_{i}\\ +\frac{1}{\theta }\sum_{i=4}^{m-1}\left(\left(\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}-\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j-i+2}\right){\dot{N}}_{j,i}\right)\right)\\ +\frac{1}{\theta }\sum_{j=3}^{\text{int}(m/2)+1}\left({\mu }_{j}+{\mu }_{m+2-j}-{\mu }_{m}\right){\dot{N}}_{m,j}\end{array}$$
(41)

Using Eqs. (19a) and (19c), we get:

$$\begin{array}{c}{\dot{S}}^{conf}=-\frac{1}{\theta }\sum_{i=3}^{m}{\mu }_{i} {\dot{N}}_{i}\\ +\frac{1}{\theta }\sum_{i=4}^{m-1}\left(\left(\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}-\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j-i+2}\right){\dot{N}}_{j,i}\right)\right)\\ +\frac{1}{\theta }\sum_{j=3}^{\text{int}(m/2)+1}\left({\mu }_{j}+{\mu }_{m+2-j}\right){\dot{N}}_{m,j}-\frac{1}{\theta }\sum_{j=4}^{m}{\mu }_{3}\left(1+{\delta }_{3,j-1}\right){\dot{N}}_{j,3}\end{array}$$
(42)

which finally gives:

$${\dot{S}}^{conf}=-\frac{1}{\theta }\sum_{i=3}^{m}{\mu }_{i}{\dot{N}}_{i}+\frac{1}{\theta }\dot{\chi }$$
(43)

with \(\dot{\chi }=\sum_{i=4}^{m}\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}-\sum_{i=3}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j+2-i}\right){\dot{N}}_{j,i}\)

Appendix 3

The objective of this appendix is to demonstrate the nullity of the term:

$$\dot{\chi }=\sum_{i=4}^{m}\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}-\sum_{i=3}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j+2-i}\right){\dot{N}}_{j,i}$$

For this purpose, let us introduce the square matrix \(M\in {\mathbb{R}}_{m,m}\) of general term:

$$\begin{array}{cc}{M}_{i,j}=\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}& {\text{if}} \, 4\le i\le m {\text{and}} \, {3}\le j\le \text{int}(i/2)+1\\ {M}_{i,j}=0& {\text{otherwise}}\end{array}$$
(44)

Thus, the first term \({\dot{\chi }}_{1}=\sum_{i=4}^{m}\sum_{j=3}^{\text{int}(i/2)+1}\left({\mu }_{j}+{\mu }_{i+2-j}\right){\dot{N}}_{i,j}\) corresponds to the sum of all the elements of the matrix: \({\dot{\chi }}_{1}=\sum_{i=1}^{m}\sum_{j=1}^{m}{M}_{i,j}\).

Furthermore, \(M\) can be split in two matrixes, \(M={M}^{1}+{M}^{2}\), with:

$$\begin{array}{cc}{M}_{i,j}^{1}={\mu }_{j}{\dot{N}}_{i,j}& {\text{if}} \, 4\le i\le m {\text{and}} \, {3}\le j\le \text{int}(i/2)+1\\ {M}_{i,j}^{1}=0& {\text{otherwise}}\end{array}$$
(45)

and

$$\begin{array}{cc}{M}_{i,j}^{2}={\mu }_{i+2-j}{\dot{N}}_{i,j}& {\text{if}} \, 4\le i\le m {\text{and}} \, {3}\le j\le \text{int}(i/2)+1\\ {M}_{i,j}^{2}=0& {\text{otherwise}}\end{array}$$
(46)

Both matrices \({M}^{1}\) and \({M}^{2}\) can be transformed by suitable permutation operations into matrices \({T}^{1}\) and \({T}^{2}\), as follows:

$$\begin{array}{cc}{T}_{i,j}^{1}={M}_{j,i}^{1}& {\text{if}} \, {1}\le i\le m \text{and 1}\le j\le m\end{array}$$
(47)

and

$$\begin{array}{cc}{T}_{i,j}^{2}={M}_{i+2-j,i}^{1}& {\text{if}} \, {1}\le i\le m \text{and 1}\le j\le m\end{array}$$
(48)

These permutations will induce no change in the term \({\dot{\chi }}_{1}=\sum_{i=1}^{m}\sum_{j=1}^{m}{M}_{ij}\), so that we have:

$${\dot{\chi }}_{1}=\sum_{i=1}^{m}\sum_{j=1}^{m}{T}_{i,j}^{1}+\sum_{i=1}^{m}\sum_{j=1}^{m}{T}_{i,j}^{2}$$
(49)

As an illustration, the case where \(m=10\) can be considered:

$${M}^{1}=\left[\begin{array}{cccccccccc}0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{4,3}}& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{5,3}}& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{6,3}}& {\mu }_{4} {\dot{N}}_{\text{6,4}}& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{7,3}}& {\mu }_{4} {\dot{N}}_{\text{7,4}}& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{8,3}}& {\mu }_{4} {\dot{N}}_{\text{8,4}}& {\mu }_{5} {\dot{N}}_{\text{8,5}}& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{9,3}}& {\mu }_{4} {\dot{N}}_{\text{9,4}}& {\mu }_{5} {\dot{N}}_{\text{9,5}}& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{10,3}}& {\mu }_{4} {\dot{N}}_{\text{10,4}}& {\mu }_{5} {\dot{N}}_{\text{10,5}}& {\mu }_{6} {\dot{N}}_{\text{10,6}}& 0& 0& 0& 0\end{array}\right]$$
(50)
$${M}^{2}=\left[\begin{array}{cccccccccc}0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{3} {\dot{N}}_{\text{4,3}}& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{4} {\dot{N}}_{\text{5,3}}& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{5} {\dot{N}}_{\text{6,3}}& {\mu }_{4} {\dot{N}}_{\text{6,4}}& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{6} {\dot{N}}_{\text{7,3}}& {\mu }_{5} {\dot{N}}_{\text{7,4}}& 0& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{7} {\dot{N}}_{\text{8,3}}& {\mu }_{6} {\dot{N}}_{\text{8,4}}& {\mu }_{5} {\dot{N}}_{\text{8,5}}& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{8} {\dot{N}}_{\text{9,3}}& {\mu }_{7} {\dot{N}}_{\text{9,4}}& {\mu }_{6} {\dot{N}}_{\text{9,5}}& 0& 0& 0& 0& 0\\ 0& 0& {\mu }_{9} {\dot{N}}_{\text{10,3}}& {\mu }_{8} {\dot{N}}_{\text{10,4}}& {\mu }_{7} {\dot{N}}_{\text{10,5}}& {\mu }_{6} {\dot{N}}_{\text{10,6}}& 0& 0& 0& 0\end{array}\right]$$
(51)

And after transformation, we get:

$${T}^{1}=\left[\begin{array}{cccccccccc}0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& {\mu }_{3} {\dot{N}}_{\text{4,3}}& {\mu }_{3} {\dot{N}}_{\text{5,3}}& {\mu }_{3} {\dot{N}}_{\text{6,3}}& {\mu }_{3} {\dot{N}}_{\text{7,3}}& {\mu }_{3} {\dot{N}}_{\text{8,3}}& {\mu }_{3} {\dot{N}}_{\text{9,3}}& {\mu }_{3} {\dot{N}}_{\text{10,3}}\\ 0& 0& 0& 0& 0& {\mu }_{4} {\dot{N}}_{\text{6,4}}& {\mu }_{4} {\dot{N}}_{\text{7,4}}& {\mu }_{4} {\dot{N}}_{\text{8,4}}& {\mu }_{4} {\dot{N}}_{\text{9,4}}& {\mu }_{4} {\dot{N}}_{\text{10,4}}\\ 0& 0& 0& 0& 0& 0& 0& {\mu }_{5} {\dot{N}}_{\text{8,5}}& {\mu }_{5} {\dot{N}}_{\text{9,5}}& {\mu }_{5} {\dot{N}}_{\text{10,5}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& {\mu }_{6} {\dot{N}}_{\text{10,6}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\end{array}\right]$$
(52)

and

$${T}^{2}=\left[\begin{array}{cccccccccc}0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& {\mu }_{3} {\dot{N}}_{\text{4,3}}& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& {\mu }_{4} {\dot{N}}_{\text{5,3}}& {\mu }_{4} {\dot{N}}_{\text{6,4}}& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& {\mu }_{5} {\dot{N}}_{\text{6,3}}& {\mu }_{5} {\dot{N}}_{\text{7,4}}& {\mu }_{5} {\dot{N}}_{\text{8,5}}& 0& 0\\ 0& 0& 0& 0& 0& 0& {\mu }_{6} {\dot{N}}_{\text{7,3}}& {\mu }_{6} {\dot{N}}_{\text{8,4}}& {\mu }_{6} {\dot{N}}_{\text{9,5}}& {\mu }_{6} {\dot{N}}_{\text{10,6}}\\ 0& 0& 0& 0& 0& 0& 0& {\mu }_{7} {\dot{N}}_{\text{8,3}}& {\mu }_{7} {\dot{N}}_{\text{9,4}}& {\mu }_{7} {\dot{N}}_{\text{10,5}}\\ 0& 0& 0& 0& 0& 0& 0& 0& {\mu }_{8} {\dot{N}}_{\text{9,3}}& {\mu }_{8} {\dot{N}}_{\text{10,4}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& {\mu }_{9} {\dot{N}}_{\text{10,3}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\end{array}\right]$$
(53)

It is worth noting that the matrix \(T={T}^{1}+{T}^{2}\) takes the convenient form:

$$T=\left[\begin{array}{cccccccccc}0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 2{\mu }_{3} {\dot{N}}_{\text{4,3}}& {\mu }_{3} {\dot{N}}_{\text{5,3}}& {\mu }_{3} {\dot{N}}_{\text{6,3}}& {\mu }_{3} {\dot{N}}_{\text{7,3}}& {\mu }_{3} {\dot{N}}_{\text{8,3}}& {\mu }_{3} {\dot{N}}_{\text{9,3}}& {\mu }_{3} {\dot{N}}_{\text{10,3}}\\ 0& 0& 0& 0& {\mu }_{4} {\dot{N}}_{\text{5,3}}& 2{\mu }_{4} {\dot{N}}_{\text{6,4}}& {\mu }_{4} {\dot{N}}_{\text{7,4}}& {\mu }_{4} {\dot{N}}_{\text{8,4}}& {\mu }_{4} {\dot{N}}_{\text{9,4}}& {\mu }_{4} {\dot{N}}_{\text{10,4}}\\ 0& 0& 0& 0& 0& {\mu }_{5} {\dot{N}}_{\text{6,3}}& {\mu }_{5} {\dot{N}}_{\text{7,4}}& 2{\mu }_{5} {\dot{N}}_{\text{8,5}}& {\mu }_{5} {\dot{N}}_{\text{9,5}}& {\mu }_{5} {\dot{N}}_{\text{10,5}}\\ 0& 0& 0& 0& 0& 0& {\mu }_{6} {\dot{N}}_{\text{7,3}}& {\mu }_{6} {\dot{N}}_{\text{8,4}}& {\mu }_{6} {\dot{N}}_{\text{9,5}}& 2{\mu }_{6} {\dot{N}}_{\text{10,6}}\\ 0& 0& 0& 0& 0& 0& 0& {\mu }_{7}{ \dot{N}}_{\text{8,3}}& {\mu }_{7} {\dot{N}}_{\text{9,4}}& {\mu }_{7} {\dot{N}}_{\text{10,5}}\\ 0& 0& 0& 0& 0& 0& 0& 0& {\mu }_{8} {\dot{N}}_{\text{9,3}}& {\mu }_{8} {\dot{N}}_{\text{10,4}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& {\mu }_{9} {\dot{N}}_{\text{10,3}}\\ 0& 0& 0& 0& 0& 0& 0& 0& 0& 0\end{array}\right]$$
(54)

Generalizing to any order m, it follows that the general term of the two matrices \({T}^{1}\) and \({T}^{2}\) reads:

$$\begin{array}{cc}{T}_{i,j}^{1}={\mu }_{i}{\dot{N}}_{j,i}& \text{if 3}\le i\le \text{int}(m/2)+1 {\text{and}} \, 2(i-1)\le j\le m\\ {T}_{i,j}^{1}=0& {\text{otherwise}}\end{array}$$
(55)

Likewise:

$$\begin{array}{cc}{T}_{i,j}^{2}={\mu }_{i} {\dot{N}}_{j,j+2-i}& {\text{if}} \, {3}\le i\le \text{int}(m/2)+1 {\text{and}} \, i+1\le j\le 2\left(i-1\right)\\ {T}_{i,j}^{2}={\mu }_{i} {\dot{N}}_{j,j+2-i}& {\text{if}} \, \text{int}\left(\frac{m}{2}\right)+2\le i\le m-1 {\text{and}} \, i+1\le j\le m\\ {T}_{i,j}^{2}=0& {\text{otherwise}}\end{array}$$
(56)

Thus, the particular form of the matrices \({T}^{1}\) and \({T}^{2}\) allows us to write:

$$\sum_{i=1}^{m}\sum_{j=1}^{m}{T}_{i,j}^{1}=\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=2(i-1)}^{m}{\mu }_{i}{\dot{N}}_{j,i}$$
(57)
$$\sum_{i=1}^{m}\sum_{j=1}^{m}{T}_{i,j}^{2}=\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=i+1}^{2(i-1)}{\mu }_{i}{\dot{N}}_{j,j+2-i}+\sum_{i=nt(m/2)+2}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}{\dot{N}}_{j,j+2-i}$$
(58)

Recalling now that \({\dot{N}}_{j,j+2-i}={\dot{N}}_{j,i}\), Eqs. (57) and (58) yield:

$${\dot{\chi }}_{1}=\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=2(i-1)}^{m}{\mu }_{i}{\dot{N}}_{j,i}+\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=i+1}^{2(i-1)}{\mu }_{i}{\dot{N}}_{j,i}+\sum_{i=nt(m/2)+2}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}{\dot{N}}_{j,i}$$
(59)

The summation \(\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=2(i-1)}^{m}{\mu }_{i}{\dot{N}}_{j,i}+\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=i+1}^{2(i-1)}{\mu }_{i}{\dot{N}}_{j,i}\) can be merged in one single term, after noting that the index \(j=2(i-1)\) is counted twice. As this corresponds to \(i=j+2-i\), it is convenient to introduce the Kronecker symbol \({\delta }_{i,j+2-i}\), so that:

$$\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=2(i-1)}^{m}{\mu }_{i}{\dot{N}}_{j,i}+\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=i+1}^{2(i-1)}{\mu }_{i}{\dot{N}}_{j,i}=\sum_{i=3}^{\text{int}(m/2)+1}\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j+2-i}\right){\dot{N}}_{j,i}$$
(60)

Furthermore, as \(j\le m\) \(j=2(i-1)\) requires that \(i\le \text{int}(m/2)+1\). Thus, the third term \(\sum_{i=nt(m/2)+2}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}{\dot{N}}_{j,i}\) can also be expressed as:

$$\sum_{i=nt(m/2)+2}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}{\dot{N}}_{j,i}=\sum_{i=nt(m/2)+2}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j+2-i}\right){\dot{N}}_{j,i}$$
(61)

Finally, combining Eq. (59) with (60) and (61) yields:

$${\dot{\chi }}_{1}=\sum_{i=3}^{m-1}\sum_{j=i+1}^{m}{\mu }_{i}\left(1+{\delta }_{i,j+2-i}\right){\dot{N}}_{j,i}$$
(62)

which proves that \(\dot{\chi }=0\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicot, F., Lin, M., Wautier, A. et al. Configurational mechanics in granular media. Granular Matter 26, 74 (2024). https://doi.org/10.1007/s10035-024-01443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01443-1

Keywords

Navigation