Log in

Modification of lutetium hydroxide for the structural and electrochemical stability of Ni-Al layered double hydroxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The modification of lutetium hydroxide on a layered double hydroxide (LDH), [Ni4Al(OH)10]NO3, is carried out by coprecipitation and thereafter hydrothermal treatment. When the content of Lu is less, only X-ray diffractions (XRD) due to [Ni4Al(OH)10]NO3 are found. When the content is 2.89 wt% or more in the product, a series of low-intensity diffractions is identified, which can be indexed with a triclinic cell, space group \( P\overline{1} \). After the modification, the a lattice parameter for Ni-Al layered double hydroxide does not show any considerable changes, which means Lu3+ could not be incorporated into M(OH)2 (M=Ni, Al) layers because of its larger ion radius (85 pm). According to the observations by scanning electron microscopy (SEM) or transmission electron microscopy (TEM), with low Lu content, single nanorods appear among the disks of [Ni4Al(OH)10]NO3 and turn into bundles with high Lu content. The modification of Lu prevents the structural transformation of the Ni-Al LDH into β-Ni(OH)2. It can be found that the transformation is stopped by 0.9 wt% Lu when being soaked in 7.0 mol L−1 potassium hydroxide (KOH) for 72 days at 60 °C, or by 1.29 wt% Lu after the 25th charging/discharging cycle at 60 °C in the same alkali solution. The modification also improves the high-temperature performances of the electrode. At a high temperature of 60 °C, the 2.89 wt% Lu-modified [Ni4Al(OH)10]NO3 has a more slowly reduced capacity of 265.8 mAh g−1 after 25 charge/discharge cycles under a current density of 800 mA g-1 in 7.0 mol L−1 KOH, while the [Ni4Al(OH)10]NO3 has a sharply reduced capacity of 202.7 mAh g−1 under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hu WK, Noreus D (2003) Chem Mater 15:974–978

    Article  CAS  Google Scholar 

  2. Hu M, Gao X, Lei L, Sun Y (2009) J Phys Chem C 113:7448–7455

    Article  CAS  Google Scholar 

  3. Gao X-P, Yang H-X (2010) Energ Environ Sci 3:174–189

    Article  CAS  Google Scholar 

  4. Cheng FY, Liang J, Tao ZL, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  5. Li J, Shangguan E, Guo D, Tian M, Wang Y, Li Q, Chang Z, Yuan X-Z, Wang H (2014) J Power Sources 270:121–130

    Article  CAS  Google Scholar 

  6. Oshitani M, Takayama T, Takashima K, Tsuji S (1986) J Appl Electrochem 16:403–412

    Article  CAS  Google Scholar 

  7. Caravaggio GA, Detellier C, Wronski Z (2001) J Mater Chem 11:912–921

    Article  CAS  Google Scholar 

  8. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Int J Hydrogen Energy 29:889–896

    Article  CAS  Google Scholar 

  9. Hu WK, Gao XP, Noreus D, Burchardt T, Nakstad NK (2006) J Power Sources 160:704–710

    Article  CAS  Google Scholar 

  10. Rives V (2001) Layered double hydroxides: present and future. Nova Science Publishers Inc., New York

    Google Scholar 

  11. Khan AI, Ragavan A, Fong B, Markland C, O’Brien M, Dunbar TG, Williams GR, O’Hare D (2009) Ind Eng Chem Res 48:10196

    Article  CAS  Google Scholar 

  12. Guo X, Zhang F, Evans DG, Duan X (2010) Chem Commun 46:5197

    Article  CAS  Google Scholar 

  13. Hu M, Lei LX (2007) J Solid State Electrochem 11:847–852

    Article  CAS  Google Scholar 

  14. Lei L, Hu M, Gao X, Sun Y (2008) Electrochim Acta 54:671–676

    Article  CAS  Google Scholar 

  15. Yang Z, Hu M, Ji X, Lei L (2011) Chin J Appl Chem 28:1323–1330

    CAS  Google Scholar 

  16. Hu M, Ji X, Lei L, Lu X (2013) J Alloys Compd 578:17–25

    Article  CAS  Google Scholar 

  17. Hu M, Ren F, Lei L, Lu X (2013) Sep Purif Technol 120:198–205

    Article  CAS  Google Scholar 

  18. Hu M, Yang Z, Lei L, Sun Y (2011) J Power Sources 196:1569–1577

    Article  CAS  Google Scholar 

  19. Hu M, Ji X, Lei L, Lu X (2013) Electrochim Acta 105:261–274

    Article  CAS  Google Scholar 

  20. Hu M, Lei L, Chen J, Sun Y (2011) Electrochim Acta 56:2862–2869

    Article  CAS  Google Scholar 

  21. Qin L, Hu M, Gao X, Lei L (2011) J Solid State Electrochem 15:405–412

    Article  CAS  Google Scholar 

  22. Oshitani M, Watada M, Shodai K, Kodama M (2001) J Electrochem Soc 148:A67–A73

    Article  CAS  Google Scholar 

  23. Tanaka T, Kuzuhara M, Watada M, Oshitani M (2006) J Alloys Compd 408:323–326

    Article  Google Scholar 

  24. Fang Q, Cheng Y, Jian X, Zhu L, Yu H, Wang Z, Jiang L (2010) J Rare Earths 28:72–78

    Article  CAS  Google Scholar 

  25. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Electrochem Commun 9:2315–2319

    Article  CAS  Google Scholar 

  26. Gándara F, Perles J, Snejko N, Iglesias M, Gómez-Lor B, Gutiérrez-Puebla E, Monge MÁ (2006) Angew Chem Int Ed 45:7998–8001

    Article  Google Scholar 

  27. Geng F, Matsushita Y, Ma R, **n H, Tanaka M, Iyi N, Sasaki T (2009) Inorg Chem 48:6724–6730

    Article  CAS  Google Scholar 

  28. Žák Z, Unfried P, Giester G (1994) J Alloys Compd 205:235–242

    Article  Google Scholar 

  29. Giester G, Žák Z, Unfried P (2009) J Alloys Compd 481:116–128

    Article  CAS  Google Scholar 

  30. Zhang J, Liu Z, Lin J, Fang J (2005) Cryst Growth Des 5:1527–1530

    Article  CAS  Google Scholar 

  31. Jia G, Zheng Y, Liu K, Song Y, You H, Zhang H (2008) J Phys Chem C 113:153–158

    Article  Google Scholar 

  32. Vucelic M, Moggridge GD, Jones W (1995) J Phys Chem 99:8328–8337

    Article  CAS  Google Scholar 

  33. Aicken AM, Bell IS, Coveney PV, Jones W (1997) Adv Mater 9:496–500

    Article  CAS  Google Scholar 

  34. Ren X, Sun B, Tsai C-C, Tu Y, Leng S, Li K, Kang Z, Horn RMV, Li X, Zhu M, Wesdemiotis C, Zhang W-B, Cheng SZD (2010) J Phys Chem B 114:4802–4810

    Article  CAS  Google Scholar 

  35. Gao X, Lei L, Hu M, Qin L, Sun Y (2009) J Power Sources 191:662–668

    Article  CAS  Google Scholar 

  36. Espinós JP, González-Elipe AR, Odriozola JA (1987) Appl Surf Sci 29:40–48

    Article  Google Scholar 

  37. Ren J, Yan J, Zhou Z, Wang X, Gao X (2006) Int J Hydrogen Energy 31:71–76

    Article  CAS  Google Scholar 

  38. Chigane M, Ishikawa M (1998) J Chem Soc Faraday Trans 94:3665–3670

    Article  CAS  Google Scholar 

  39. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley-Interscience, New York

    Google Scholar 

  40. Wang X, Li Y (2003) Chem Eur J 9:5627–5635

    Article  CAS  Google Scholar 

  41. Wang L, Li B, Zhao X, Chen C, Cao J (2012) PLoS ONE 7:e37781

    Article  CAS  Google Scholar 

  42. Mi X, Gao XP, Jiang CY, Geng MM, Yan J, Wan CR (2004) Electrochim Acta 49:3361–3366

    Article  CAS  Google Scholar 

  43. Li WY, Zhang SY, Chen J (2005) J Phys Chem B 109:14025–14032

    Article  CAS  Google Scholar 

  44. Fan J, Yang Y, Yang Y, Shao H (2007) Electrochim Acta 53:1979–1986

    Article  CAS  Google Scholar 

  45. He XM, Jiang CY, Li W, Wan CR (2006) J Electrochem Soc 153:A566–A569

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner LR (2003) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  47. Liu B, Wang XY, Yuan HT, Zhang YS, Song DY, Zhou ZX (1999) J Appl Electrochem 29:855–860

    Article  CAS  Google Scholar 

  48. Motupally S, Streinz CC, Weidner JW (1998) J Electrochem Soc 145:29–34

    Article  CAS  Google Scholar 

  49. Zhu W-H, Ke J-J, Yu H-M, Zhang D-J (1995) J Power Sources 56:75

    Article  CAS  Google Scholar 

  50. Zhang X, Gong Z, Zhao S, Geng M, Wang Y, Northwood DO (2008) J Power Sources 175:630–634

    Article  CAS  Google Scholar 

  51. Li J, Shangguan E, Guo D, Li Q, Chang Z, Yuan X-Z, Wang H (2014) J Power Sources 263:110–117

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Science Research Foundation of Shanghai Institute of Technology, Grant No. YJ2014-20, China Postdoctoral Science Foundation, Grant No. 2011M500840, Jiangsu Planned Projects for Postdoctoral Research Foundation, Grant No. 1101009C, and Postdoctoral Science Fund of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Zuo, S., Yang, R. et al. Modification of lutetium hydroxide for the structural and electrochemical stability of Ni-Al layered double hydroxide. J Solid State Electrochem 19, 671–683 (2015). https://doi.org/10.1007/s10008-014-2651-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2651-4

Keywords

Navigation