Log in

Absorption spectra of p–nitroaniline derivatives: charge transfer effects and the role of substituents

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Push–pull compounds are model systems and have numerous applications. By changing their substituents, properties are modified and new molecules for different applications can be designed. The work investigates the gas-phase electronic absorption spectra of 15 derivatives of push–pull para–nitroaniline (pNA). This molecule has applications in pharmaceuticals, azo dyes, corrosion inhibitors, and optoelectronics. Both electron-donor and electron-withdrawing groups were investigated. Employing machine learning–derived Hammett’s constants σm, σm0, σR, and σI, correlations between substituents and electronic properties were obtained. Overall, the σm0 constants presented the best correlation with HOMO and LUMO energies, whereas the σR constants best agreed with the transition energy of the first band and HOMO–LUMO energy gap. Electron-donors, which have lower σR values, redshift the absorption spectrum and reduce the HOMO–LUMO energy gap. Conversely, electron-withdrawing groups (higher σR’s) blueshift the spectrum and increase the energy gap. The second band maximum energies, studied here for the first time, showed no correlation with σ but tended to increase with σ. A comprehensive charge transfer (CT) analysis of the main transition of all systems was also carried out. We found that donors (lower σ’s) slightly enhance the CT character of the unsubstituted pNA, whereas acceptors (higher σ’s) decrease it, leading to increased local excitations within the aromatic ring. The overall CT variation is not large, except for pNA–SO2H, which considerably decreases the total CT value. We found that the strong electron donors pNA–OH, pNA–OCH3, and pNA–NH2, which have the smallest HOMO–LUMO energy gaps and lowest σ’s, have potential for optoelectronic applications. The results show that none of the studied molecules is fluorescent in the gas phase. However, pNA–NH2 and pNA–COOH in cyclohexane and water reveal fluorescence upon solvation.

Methods

We investigated theoretically employing the second-order algebraic diagrammatic construction (ADC(2)) ab initio wave function and time-dependent density functional theory (TDDFT) the gas-phase electronic absorption spectra of 15 derivatives of p–nitroaniline (pNA). The investigated substituents include both electron-donor (C6H5, CCH, CH3, NH2, OCH3, and OH,) and electron-withdrawing (Br, CCl3, CF3, Cl, CN, COOH, F, NO2, and SO2H) substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Information (SI). Additional data are available in GitHub and Zenodo [120]. The Supplementary Information discusses the rationale for the choice of the substituent position, reviews the literature concerning the substituent’s influence on the absorption spectra, presents the vertical gas-phase spectra of all molecules, NTOs, correlations between Hammett’s constants and molecular properties, and xyz coordinates of the converged geometries.

References

  1. Bureš F (2014) Fundamental aspects of property tuning in push–pull molecules. RSC Adv 4:58826–58851. https://doi.org/10.1039/C4RA11264D

    Article  CAS  Google Scholar 

  2. Aquino AAJ, Borges I, Nieman R, Köhn A, Lischka H (2014) Intermolecular interactions and charge transfer transitions in aromatic hydrocarbon–tetracyanoethylene complexes. Phys Chem Chem Phys 16:20586–20597. https://doi.org/10.1039/C4CP02900C

    Article  CAS  PubMed  Google Scholar 

  3. Stein T, Kronik L, Baer R (2009) Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. J Am Chem Soc 131:2818–2820. https://doi.org/10.1021/ja8087482

    Article  CAS  PubMed  Google Scholar 

  4. Karak S, Liu F, Russell TP, Duzhko VV (2014) Bulk charge carrier transport in push-pull type organic semiconductor. ACS Appl Mater Interfaces 6:20904–20912. https://doi.org/10.1021/am505572v

    Article  CAS  PubMed  Google Scholar 

  5. Turkoglu G, Cinar ME, Ozturk T (2017) Triarylborane-based materials for OLED applications. Molecules 22(9):1522. https://doi.org/10.3390/molecules22091522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Archetti G, Abbotto A, Wortmann R (2006) Effect of polarity and structural design on molecular photorefractive properties of heteroaromatic-based push pull dyes. Chem - A Eur J 12(27):7151–7160. https://doi.org/10.1002/chem.200600037

    Article  CAS  Google Scholar 

  7. Jie Xu S, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X, Xu S, Zhou Z, Liu W, Zhang Z, Zhu X, Liu F, Yan H (2017) A Twisted thieno[3,4-b]thiophene-based electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics. Advanced Materials. 29(2017):1704510. https://doi.org/10.1002/ADMA.201704510

    Article  Google Scholar 

  8. Paek S, Lee JK, Ko J (2014) Synthesis and photovoltaic characteristics of push–pull organic semiconductors containing an electron-rich dithienosilole bridge for solution-processed small-molecule organic solar cells. Sol Energy Mater Sol Cells 120:209–217. https://doi.org/10.1016/J.SOLMAT.2013.09.005

    Article  CAS  Google Scholar 

  9. Ipuy M, Billon C, Micouin G, Samarut J, Andraud C, Bretonnière Y (2014) Fluorescent push–pull pH-responsive probes for ratiometric detection of intracellular pH. Org Biomol Chem 12:3641–3648. https://doi.org/10.1039/C4OB00147H

    Article  CAS  PubMed  Google Scholar 

  10. Gao SH, **e MS, Wang HX, Niu HY, Qu GR, Guo HM (2014) Highly selective detection of Hg2+ ion by push–pull-type purine nucleoside-based fluorescent sensor. Tetrahedron 70:4929–4933. https://doi.org/10.1016/J.TET.2014.05.050

    Article  CAS  Google Scholar 

  11. Jones RM, Lu L, Helgeson R, Bergstedt TS, McBranch DW, Whitten DG (2001) Building highly sensitive dye assemblies for biosensing from molecular building blocks. Proc Natl Acad Sci U S A 98:14769–14772. https://doi.org/10.1073/pnas.251555298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ziessel R, Ulrich G, Harriman A, Alamiry MAH, Stewart B, P, (2009) Retailleau, Solid-state gas sensors developed from functional difluoroboradiazaindacene dyes. Chem - A Eur J 15:1359–1369. https://doi.org/10.1002/CHEM.200801911

    Article  CAS  Google Scholar 

  13. Cesaretti A, Foggi P, Fortuna CG, Elisei F, Spalletti A, Carlotti B (2020) Uncovering structure-property relationships in push-pull chromophores: a promising route to large hyperpolarizability and two-photon absorption. J Phys Chem C 124:15739–15748. https://doi.org/10.1021/acs.jpcc.0c03536

    Article  CAS  Google Scholar 

  14. Sipala F, Cavallaro G, Forte G, Satriano C, Giuffrida A, Fraix A, Spadaro A, Petralia S, Bonaccorso C, Fortuna CG, Ronsisvalle S (2023) Different in silico approaches using heterocyclic derivatives against the binding between different lineages of SARS-CoV-2 and ACE2. Molecules 28(9):3908. https://doi.org/10.3390/molecules28093908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao C, Zeng Z, Cao C (2022) A new insight into the push-pull effect of substituents via the stilbene-like model compounds. J Phys Org Chem 35:e4319. https://doi.org/10.1002/poc.4319

    Article  CAS  Google Scholar 

  16. Ruiz Delgado MC, Hernández V, Casado J, López Navarrete JT, Raimundo JM, Blanchard P, Roncali J (2003) Vibrational and quantum-chemical study of push–pull chromophores for second-order nonlinear optics from rigidified thiophene-based π-conjugating spacers. Chem - A Eur J 9(15):3670–3682. https://doi.org/10.1002/chem.200204542

    Article  CAS  Google Scholar 

  17. Ahn M, Kim MJ, Cho DW, Wee KR (2021) Electron push-pull effects on intramolecular charge transfer in perylene-based donor-acceptor compounds. J Org Chem 86:403–413. https://doi.org/10.1021/acs.joc.0c02149

    Article  CAS  PubMed  Google Scholar 

  18. Irfan A, Aftab H, Al-Sehemi AG (2014) Push–pull effect on the geometries, electronic and optical properties of thiophene based dye-sensitized solar cell materials. J Saudi Chem Soc 18:914–919. https://doi.org/10.1016/j.jscs.2011.11.013

    Article  Google Scholar 

  19. Raczyńska ED, Gal JF, Maria PC, Saeidian H (2021) Push–pull effect on the gas-phase basicity of nitriles: transmission of the resonance effects by methylenecyclopropene and cyclopropenimine π-ssubstituted by two identical strong electron donors. Symmetry (Basel) 13:1554. https://doi.org/10.3390/SYM13091554/S1

    Article  Google Scholar 

  20. Burmistrov VA, Trifonova IP, Islyaikin MK, Semeikin AS, Koifman OI (2022) Push-pull effect at formation of sitting-atop metal-porphyrin complex in solvating media: H-bonding and electrostatic repulsion. ChemistrySelect 7:e202103677. https://doi.org/10.1002/SLCT.202103677

    Article  CAS  Google Scholar 

  21. **ao P, Frigoli M, Dumur F, Graff B, Gigmes D, Fouassier JP, Lalevée J (2014) Julolidine or fluorenone based push-pull dyes for polymerization upon soft polychromatic visible light or green light. Macromolecules 47:106–112. https://doi.org/10.1021/ma402196p

    Article  CAS  Google Scholar 

  22. Mokbel H, Dumur F, Telitel S, Vidal L, **ao P, Versace DL, Tehfe MA, Morlet-Savary F, Graff B, Fouassier JP, Gigmes D, Toufaily J, Hamieh T, Lalevée J (2013) Photoinitiating systems of polymerization and in situ incorporation of metal nanoparticles into polymer matrices upon exposure to visible light: push–pull malonate and malononitrile based dyes. Polym Chem 4:5679–5687. https://doi.org/10.1039/C3PY00846K

    Article  CAS  Google Scholar 

  23. Tehfe MA, Dumur F, Graff B, Morlet-Savary F, Gigmes D, Fouassier JP, Lalevée J (2013) Push–pull (thio)barbituric acid derivatives in dye photosensitized radical and cationic polymerization reactions under 457/473 nm laser beams or blue LEDs. Polym Chem 4:3866–3875. https://doi.org/10.1039/C3PY00372H

    Article  CAS  Google Scholar 

  24. Tehfe MA, Dumur F, Graff B, Morlet-Savary F, Fouassier JP, Gigmes D, Lalevée J (2013) New push-pull dyes derived from Michler’s ketone for polymerization reactions upon visible lights. Macromolecules 46:3761–3770. https://doi.org/10.1021/ma400766z

    Article  CAS  Google Scholar 

  25. Tehfe MA, Dumur F, Graff B, Gigmes D, Fouassier JP, Lalevée J (2013) Blue-to-red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions. Macromolecules 46:3332–3341. https://doi.org/10.1021/ma4005082

    Article  CAS  Google Scholar 

  26. Muñoz-Flores BM, Santillán R, Rodríguez G, Ramos JL, Maldonado M, Romero N. Farfán (2012) Synthesis and chemical-optical characterization of push-pull stilbenes. Rev Latinoam Quim 40:178–186

    Google Scholar 

  27. Borovkova VS, Malyar YN, Vasilieva NY, Skripnikov AM, Ionin VA, Sychev VV, Golubkov VA, Taran OP (2023) New azo derivatives of ethanol lignin: synthesis, structure, and photosensitive properties. Materials 16(4):1525. https://doi.org/10.3390/MA16041525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khalil OS, Seliskar CJ, McGlynn SP (2003) Electronic spectroscopy of highly-polar aromatics. II. Luminescence of nitroanilines. J Chem Phys. 58(4):1607. https://doi.org/10.1063/1.1679401

    Article  Google Scholar 

  29. Carsey TP, Findley GL, Mcglynn SP (1979) Systematics in the electronic spectra of polar molecules. 1. Para-Disubstituted Benzenes. J Am Chem Soc. 101(16):4502–4510. https://doi.org/10.1021/ja00510a013

    Article  CAS  Google Scholar 

  30. Kosenkov D, Slipchenko LV (2011) Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study. J Phys Chem A 115:392–401. https://doi.org/10.1021/jp110026c

    Article  CAS  PubMed  Google Scholar 

  31. Frutos-Puerto S, Aguilar MA, Fdez Galván I (2013) Theoretical study of the preferential solvation effect on the solvatochromic shifts of para-nitroaniline. J Phys Chem B 117(8):2466–2474. https://doi.org/10.1021/jp310964k

    Article  CAS  PubMed  Google Scholar 

  32. Millefiori S, Favini G, Millefiori A, Grasso D (1977) Electronic spectra and structure of nitroanilines. Spectrochim Acta A 33:21–27. https://doi.org/10.1016/0584-8539(77)80143-8

    Article  Google Scholar 

  33. Agudelo-Morales CE, Silva OF, Galian RE, Pérez-Prieto J (2012) Nitroanilines as quenchers of pyrene fluorescence. ChemPhysChem 13:4195–4201. https://doi.org/10.1002/CPHC.201200637

    Article  CAS  PubMed  Google Scholar 

  34. Zaleśny R (2014) Anharmonicity contributions to the vibrational first and second hyperpolarizability of para-disubstituted benzenes. Chem Phys Lett 595–596:109–112. https://doi.org/10.1016/J.CPLETT.2014.01.041

    Article  Google Scholar 

  35. Champagne B (1996) Vibrational polarizability and hyperpolarizability of p-nitroaniline. Chem Phys Lett 261:57–65. https://doi.org/10.1016/0009-2614(96)00928-1

    Article  CAS  Google Scholar 

  36. Nayak A, Park J, De Mey K, Hu X, Duncan TV, Beratan DN, Clays K, Therien MJ (2016) Large hyperpolarizabilities at telecommunication-relevant wavelengths in donor-acceptor-donor nonlinear optical chromophores. ACS Cent Sci 2:954–966. https://doi.org/10.1021/acscentsci.6b00291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woodford JN, Pauley MA, Wang CH (1997) Solvent dependence of the first molecular hyperpolarizability of p-nitroaniline revisited. J Phys Chem A 101:1989–1992. https://doi.org/10.1021/jp9639861

    Article  CAS  Google Scholar 

  38. Zhao YS, Sun C, Sun JQ, Zhou R (2015) Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process. Sep Purif Technol 142:182–188. https://doi.org/10.1016/J.SEPPUR.2014.12.035

    Article  CAS  Google Scholar 

  39. Damej M, Molhi A, Tassaoui K, El Ibrahimi B, Akounach Z, Addi AA, S. El hajjaji, M. Benmessaoud, (2022) Experimental and theoretical study to understand the adsorption process of p-anisidine and 4-nitroaniline for the dissolution of C38 carbon steel in 1M HCl. ChemistrySelect 7(2):e202103192. https://doi.org/10.1002/SLCT.202103192

    Article  CAS  Google Scholar 

  40. Ma W, Fang Y (2006) Experimental (FT-IR) and theoretical (DFT) studies on the adsorption behavior of p-nitroaniline (PNA) on gold nanoparticales. J Nanoparticle Res 8(5):761–767. https://doi.org/10.1007/S11051-005-9059-0

    Article  CAS  Google Scholar 

  41. Ma W, Fang Y (2006) Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles. J Colloid Interface Sci 303:1–8. https://doi.org/10.1016/J.JCIS.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Wielgus M, Michalska J, Samoc M, Bartkowiak W (2015) Two-photon solvatochromism III: experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline. Dyes Pigm 113:426–434. https://doi.org/10.1016/J.DYEPIG.2014.09.009

    Article  CAS  Google Scholar 

  43. Rashid AN (2004) Basis set effects on the ground and excited state of nitrogen containing organic molecules p-Nitroaniline as a case study. J Mol Struct: THEOCHEM. 681(1–3):57–63. https://doi.org/10.1016/j.theochem.2004.04.050

    Article  CAS  Google Scholar 

  44. Moran AM, Blanchard-Desce M, Kelley AM (2002) Aromatic versus polyenic linkers in push–pull chromophores: electron–phonon coupling effects. Chem Phys Lett 358:320–327. https://doi.org/10.1016/S0009-2614(02)00631-0

    Article  CAS  Google Scholar 

  45. Cardenuto MH, Coutinho K, Cabral BJC, Canuto S (2015) Electronic properties in supercritical fluids: the absorption spectrum of p-nitroaniline in supercritical water. Adv Quantum Chem 71:323–339. https://doi.org/10.1016/bs.aiq.2015.03.006

    Article  CAS  Google Scholar 

  46. Day PN, Pachter R, Nguyen KA (2014) Analysis of nonlinear optical properties in donor–acceptor materials. J Chem Phys 140:184308. https://doi.org/10.1063/1.4874267

    Article  CAS  PubMed  Google Scholar 

  47. Eriksen JJ, Sauer SPA, Mikkelsen KV, Christiansen O, Jensen HJA, Kongsted J (2013) Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline. Mol Phys 111:1235–1248. https://doi.org/10.1080/00268976.2013.793841

    Article  CAS  Google Scholar 

  48. Sok S, Willow SY, Zahariev F, Gordon MS (2011) Solvent-induced shift of the lowest singlet π → π* charge-transfer excited state of p-nitroaniline in water: An application of the TDDFT/EFP1 method. J Phys Chem A 115:9801–9809. https://doi.org/10.1021/jp2045564

    Article  CAS  PubMed  Google Scholar 

  49. Hidalgo M, Rivelino R, Canuto S (2014) Origin of the red shift for the lowest singlet π → π* charge-transfer absorption of p-nitroaniline in supercritical CO2. J Chem Theory Comput 10:1554–1562. https://doi.org/10.1021/ct401081e

    Article  CAS  PubMed  Google Scholar 

  50. Moran AM, Kelley AM (2001) Solvent effects on ground and excited electronic state structures of p-nitroaniline. J Chem Phys 115:912. https://doi.org/10.1063/1.1378319

    Article  CAS  Google Scholar 

  51. Ambrosetti M, Skoko S, Giovannini T, Cappelli C (2021) Quantum mechanics/fluctuating charge protocol to compute solvatochromic shifts. J Chem Theory Comput 17:7146–7156. https://doi.org/10.1021/acs.jctc.1c00763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanches de Araújo AV, Marques LR, Borin AC, Ando RA (2022) Simulation of charge-transfer, UV-VIS and resonance Raman spectra of push–pull systems: a TDDFT and CASPT2 comparison. Phys Chem Chem Phys 24:28522–28529. https://doi.org/10.1039/D2CP04401C

    Article  PubMed  Google Scholar 

  53. Cabral BJC, Coutinho K, Canuto S (2016) A first-principles approach to the dynamics and electronic properties of p-nitroaniline in water. J Phys Chem A 120:3878–3887. https://doi.org/10.1021/ACS.JPCA.6B01797

    Article  CAS  PubMed  Google Scholar 

  54. Shkir M, Riscob B, Hasmuddin M, Singh P, Ganesh V, Wahab MA, Dieguez E, Bhagavannarayana G (2014) Optical spectroscopy, crystalline perfection, etching and mechanical studies on P-nitroaniline (PNA) single crystals. Opt Mater (Amst) 36:675–681. https://doi.org/10.1016/J.OPTMAT.2013.11.009

    Article  CAS  Google Scholar 

  55. Cabral BJC, Rivelino R, Coutinho K, Canuto S (2015) Probing Lewis acid-base interactions with Born-Oppenheimer molecular dynamics: the electronic absorption spectrum of p-nitroaniline in supercritical CO2. J Phys Chem B 119:8397–8405. https://doi.org/10.1021/acs.jpcb.5b02902

    Article  CAS  PubMed  Google Scholar 

  56. Ramos TN, Silva DL, Cabral BJC, Canuto S (2020) On the spectral line width broadening for simulation of the two-photon absorption cross-section of para-nitroaniline in liquid environment. J Mol Liq 301:112405. https://doi.org/10.1016/j.molliq.2019.112405

    Article  CAS  Google Scholar 

  57. Siva T, Thirumurugan P, Jeyanthi P, Ramadoss A (2022) Synthesis and characterization of poly (aniline-co-p-nitroaniline) (PANA) and its corrosion-resistant properties against corrosive media. Results Surf Interfaces 8:100069. https://doi.org/10.1016/J.RSURFI.2022.100069

    Article  Google Scholar 

  58. Rashid M, Sabir S (2009) Oxidative copolymerization of aniline with o- and p-nitroaniline by ammonium per sulfate: kinetic and pathway. J Dispers Sci Technol 30:297–304. https://doi.org/10.1080/01932690802540004

    Article  CAS  Google Scholar 

  59. Abed-Elmageed AAI, Zoromba MS, Hassanien R, Al-Hossainy AF (2020) Facile synthesis of spin-coated poly (4-nitroaniline) thin film: Structural and optical properties. Opt Mater (Amst) 109:110378. https://doi.org/10.1016/J.OPTMAT.2020.110378

    Article  CAS  Google Scholar 

  60. Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-018-2911-6

    Article  CAS  Google Scholar 

  61. Benigni R, Passerini L (2002) Carcinogenicity of the aromatic amines: from structure–activity relationships to mechanisms of action and risk assessment, Mutation Research/Reviews in Mutation. Research 511:191–206. https://doi.org/10.1016/S1383-5742(02)00008-X

    Article  CAS  Google Scholar 

  62. **e W, Zhang J, Zeng Y, Wang H, Yang Y, Zhai Y, Miao D, Li L (2020) Highly sensitive and selective detection of 4-nitroaniline in water by a novel fluorescent sensor based on molecularly imprinted poly(ionic liquid). Anal Bioanal Chem 412:5653–5661. https://doi.org/10.1007/s00216-020-02785-4

    Article  CAS  PubMed  Google Scholar 

  63. Jezuita A, Ejsmont K, Szatylowicz H (2021) Substituent effects of nitro group in cyclic compounds. Struct Chem 32:179–203. https://doi.org/10.1007/s11224-020-01612-x

    Article  CAS  Google Scholar 

  64. Bragato M, Von Rudorff GF, Von Lilienfeld OA (2020) Data enhanced Hammett-equation: reaction barriers in chemical space. Chem Sci 11:11859–11868. https://doi.org/10.1039/D0SC04235H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monteiro-de-Castro G, Duarte JC, Jr IB (2023) Machine learning determination of new Hammett’s constants for meta- and para-substituted benzoic acid derivatives employing quantum chemical atomic charge methods. J Org Chem 88(14):9791–9802. https://doi.org/10.1021/acs.joc.3c00410

  66. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Herndon

    Google Scholar 

  67. Johnson CD (1973) The Hammett equation. Cambridge University, London

    Google Scholar 

  68. Teixeira RI, da Silva RB, Gaspar CS, de Lucas NC, Garden SJ (2021) Photophysical properties of fluorescent 2-(phenylamino)-1,10-phenanthroline derivatives†. Photochem Photobiol 97:47–60. https://doi.org/10.1111/PHP.13303

    Article  CAS  PubMed  Google Scholar 

  69. Yamaguchi E, Shibahara F, Murai T (2011) 1-Alkynyl- and 1-alkenyl-3-arylimidazo[1,5-a]pyridines: synthesis, photophysical properties, and observation of a linear correlation between the fluorescent wavelength and Hammett substituent constants. J Org Chem 76:6146–6158. https://doi.org/10.1021/jo200864x

    Article  CAS  PubMed  Google Scholar 

  70. Schirmer J (1982) Beyond the random-phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A (Coll Park) 26:2395. https://doi.org/10.1103/PhysRevA.26.2395

    Article  CAS  Google Scholar 

  71. Trofimov AB, Schirmer J (1995) An efficient polarization propagator approach to valence electron excitation spectra. J Phys B: At Mol Opt Phys 28:2299. https://doi.org/10.1088/0953-4075/28/12/003

    Article  CAS  Google Scholar 

  72. Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  73. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619. https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  74. Grus J (2015) Data science from scratch: first principles with Python, 1st edn. O’Reilly Media Inc, Sebastopol

    Google Scholar 

  75. Plasser F (2020) TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J Chem Phys 152:8. https://doi.org/10.1063/1.5143076/199402

    Article  Google Scholar 

  76. Plasser F (2016) TheoDORE 1.4: a package for theoretical density, orbital relaxation and exciton analysis. https://theodore-qc.sourceforge.io

  77. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777. https://doi.org/10.1063/1.1558471

    Article  CAS  Google Scholar 

  78. Bäppler SA, Plasser F, Wormit M, Dreuw A (2014) Exciton analysis of many-body wave functions: bridging the gap between the quasiparticle and molecular orbital pictures. Phys Rev A 90:052521. https://doi.org/10.1103/PhysRevA.90.052521

    Article  CAS  Google Scholar 

  79. Plasser F, Lischka H (2012) Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J Chem Theory Comput 8:2777–2789. https://doi.org/10.1021/ct300307c

    Article  CAS  PubMed  Google Scholar 

  80. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects, Physical. Review 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  81. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/J.CPLETT.2004.06.011

    Article  CAS  Google Scholar 

  82. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:134105. https://doi.org/10.1063/1.3484283/920872

    Article  PubMed  Google Scholar 

  83. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  84. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2013) Gaussian 09W, revision 9.5. https://gaussian.com/

  85. Whitten JL (1973) Coulombic potential energy integrals and approximations. J Chem Phys 58:4496–4501. https://doi.org/10.1063/1.1679012

    Article  CAS  Google Scholar 

  86. Dunlap BI, Connolly JWD, Sabin JR, Dunlapa BI, Connolly JWD, Sabin JR (1979) On some approximations in applications of Xα theory. J Chem Phys 71(8):3396–3402. https://doi.org/10.1063/1.438728

    Article  CAS  Google Scholar 

  87. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  88. TURBOMOLE V6.6 2014, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; TURBOMOLE GmbH, since: Karlsruhe, 2007. Available at: http://www.turbomole.com.

  89. Dreuw A, Wormit M (2015) The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip Rev Comput Mol Sci 5:82–95. https://doi.org/10.1002/WCMS.1206

    Article  CAS  Google Scholar 

  90. Braun G, Borges I, Aquino AJA, Lischka H, Plasser F, Do Monte SA, Ventura E, Mukherjee S, Barbatti M (2022) Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states. J Chem Phys 157:154305. https://doi.org/10.1063/5.0113908/2842001

    Article  CAS  PubMed  Google Scholar 

  91. Cardozo TM, Aquino AJA, Barbatti M, Borges I, Lischka H (2015) Absorption and fluorescence spectra of poly(p -phenylenevinylene) (PPV) oligomers: an ab initio simulation. J Phys Chem A 119:1787–1795. https://doi.org/10.1021/jp508512s

    Article  CAS  PubMed  Google Scholar 

  92. Borges I, Aquino AJA, Barbatti M, Lischka H (2009) The electronically excited states of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine): vertical excitations. Int J Quantum Chem 109:2348–2355. https://doi.org/10.1002/QUA.22043

    Article  CAS  Google Scholar 

  93. Borges I, Aquino AJA, Köhn A, Nieman R, Hase WL, Chen LX, Lischka H (2013) Ab initio modeling of excitonic and charge-transfer states in organic semiconductors: the PTB1/PCBM low band gap system. J Am Chem Soc 135:18252–18255. https://doi.org/10.1021/ja4081925

    Article  CAS  PubMed  Google Scholar 

  94. Borges I, Uhl E, Modesto-Costa L, Aquino AJA, Lischka H (2016) Insight into the excited state electronic and structural properties of the organic photovoltaic donor polymer poly(thieno[3,4-b]thiophene benzodithiophene) by means of ab initio and density functional theory. J Phys Chem C 120:21818–21826. https://doi.org/10.1021/acs.jpcc.6b07689

    Article  CAS  Google Scholar 

  95. Mewes SA, Plasser F, Krylov A, Dreuw A (2018) Benchmarking excited-state calculations using exciton properties. J Chem Theory Comput 14:710–725. https://doi.org/10.1021/acs.jctc.7b01145

    Article  CAS  PubMed  Google Scholar 

  96. Cardozo TM, Galliez AP, Borges I, Plasser F, Aquino AJA, Barbatti M, Lischka H (2019) Dynamics of benzene excimer formation from the parallel-displaced dimer. Phys Chem Chem Phys 21:13916–13924. https://doi.org/10.1039/C8CP06354K

    Article  CAS  PubMed  Google Scholar 

  97. De Castro Araujo D, Valente I, Borges T.M. Cardozo (2021) Nonradiative relaxation mechanisms of the elusive silole molecule. Phys Chem Chem Phys 23:26561–26574. https://doi.org/10.1039/D1CP03803F

    Article  Google Scholar 

  98. Mattos RS, Burghardt I, Aquino AJA, Cardozo TM, Lischka H (2022) On the cooperative origin of solvent-enhanced symmetry-breaking charge transfer in a covalently bound tetracene dimer leading to singlet fission. J Am Chem Soc 144:23492–23504. https://doi.org/10.1021/jacs.2c10129

    Article  CAS  PubMed  Google Scholar 

  99. Modesto-Costa L, Uhl E, Borges I (2015) Water solvent effects using continuum and discrete models: the nitromethane molecule, CH3NO2. J Comput Chem 36:2260–2269. https://doi.org/10.1002/JCC.24208

    Article  CAS  PubMed  Google Scholar 

  100. Bohnwagner MV, Burghard I, Dreuw A (2016) Solvent polarity tunes the barrier height for twisted intramolecular charge transfer in N-pyrrolobenzonitrile (PBN). J Phys Chem A 120:14–27. https://doi.org/10.1021/acs.jpca.5b09115

    Article  CAS  PubMed  Google Scholar 

  101. Modesto-Costa L, Borges I (2018) Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: the 4-N, N-dimethylaminobenzonitrile (DMABN) molecule. Spectrochim Acta A Mol Biomol Spectrosc 201:73–81. https://doi.org/10.1016/J.SAA.2018.04.064

    Article  CAS  PubMed  Google Scholar 

  102. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  103. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. https://doi.org/10.1002/JCC.10189

    Article  CAS  PubMed  Google Scholar 

  104. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, Journal of the Chemical Society, Perkin. Transactions 2:799–805. https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

  105. Lunkenheimer B, Köhn A (2013) Solvent effects on electronically excited states using the conductor-like screening model and the second-order correlated method ADC(2). J Chem Theory Comput 9:977–994. https://doi.org/10.1021/ct300763v

    Article  CAS  PubMed  Google Scholar 

  106. Trueblood KN, Goldish E, Donohue J (1961) A three-dimensional refinement of the crystal structure of 4-nitroaniline. Acta Cryst 14(10):1009–1017. https://doi.org/10.1107/S0365110X61002965

    Article  CAS  Google Scholar 

  107. Colapietro M, Domenicano A, Marciante C, Portalone G (1982) Effects of through-conjugation on the molecular structure of p-nitroaniline [1], Zeitschrift Fur Naturforschung - Section B. J Chem Sci 37:1309–1311. https://doi.org/10.1515/znb-1982-1016

    Article  Google Scholar 

  108. Nieger M (2008) CCDC, 659427: experimental crystal structure determination. https://doi.org/10.5517/ccq45vv

  109. Marenich AV, Cramer CJ, Truhlar DG (2015) Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling. J Phys Chem B 119:958–967. https://doi.org/10.1021/jp506293w

    Article  CAS  PubMed  Google Scholar 

  110. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:9. https://doi.org/10.1063/1.2173258/186201

    Article  Google Scholar 

  111. Stähelin M, Burland DM, Rice JE (1992) Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chem Phys Lett 191:245–250. https://doi.org/10.1016/0009-2614(92)85295-L

    Article  Google Scholar 

  112. Wang CK, Wang YH, Su Y, Luo Y (2003) Solvent dependence of solvatochromic shifts and the first hyperpolarizability of para-nitroaniline: a nonmonotonic behavior. J Chem Phys 119:4409–4412. https://doi.org/10.1063/1.1594181

    Article  CAS  Google Scholar 

  113. Thomsen CL, Thøgersen J, Keiding SR (1998) Ultrafast charge-transfer dynamics: studies of p-nitroaniline in water and dioxane. J Phys Chem A 102:1062–1067. https://doi.org/10.1021/JP972492G

    Article  CAS  Google Scholar 

  114. Kovalenko SA, Schanz R, Farztdinov VM, Hennig H, Ernsting NP (2000) Femtosecond relaxation of photoexcited para-nitroaniline: solvation, charge transfer, internal conversion and cooling. Chem Phys Lett 323:312–322. https://doi.org/10.1016/S0009-2614(00)00432-2

    Article  CAS  Google Scholar 

  115. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. https://doi.org/10.1002/9783527650002

  116. Yurkanis P (2016) Bruice, Organic chemistry, 8th edn. Pearson Education, New Jersey

    Google Scholar 

  117. Klán P, Wirz J (2009) Photochemistry of organic compounds : from concepts to practice. Wiley, Chichester, UK

    Book  Google Scholar 

  118. Zhao Q, Qu J, He F (2020) Chlorination: an effective strategy for high-performance organic solar cells. Adv Sci 7:14. https://doi.org/10.1002/advs.202000509

    Article  CAS  Google Scholar 

  119. Shimizu A, Ishizaki Y, Horiuchi S, Hirose T, Matsuda K, Sato H, Yoshida JI (2021) HOMO-LUMO energy-gap tuning of π-conjugated zwitterions composed of electron-donating anion and electron-accepting cation. J Org Chem 86:770–781. https://doi.org/10.1021/acs.joc.0c02343

    Article  CAS  PubMed  Google Scholar 

  120. Máximo-Canadas M, Borges Jr I (2023) Absorption spectra of p-nitroaniline derivatives: charge transfer effects and the role of substituents, (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8338485

Download references

Acknowledgements

I. B. thanks the Brazilian agencies CNPq (Grant numbers 304148/2018-0 and 409447/2018-8) and FAPERJ (Grant number E26/201.197/2021) for support. M.M.C. thanks CAPES for a M. Sc. scholarship.

Funding

I.B. thanks the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through research grants 304148/2018–0 and 409447/2018–8 and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj) through grant E-26/201.197/2021 for the support of this research. Support for this research also came from the National Institute of Science and Technology on Molecular Sciences (INCT-CiMol) grant CNPq 406804/2022–2 and Nano Network grant FAPERJ E-26/200.008/2020. MMC thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Matheus Máximo-Canadas: data curation, formal analysis, investigation, visualization, and writing—review and editing; Itamar Borges Jr: conceptualization, data curation, formal analysis, funding acquisition, methodology, project administration, resources, supervision, and writing—review and editing.

Corresponding author

Correspondence to Itamar Borges Jr..

Ethics declarations

Competing interests

I. B. is a permanent Associate Editor of JMM.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Máximo-Canadas, M., Borges, I. Absorption spectra of p–nitroaniline derivatives: charge transfer effects and the role of substituents. J Mol Model 30, 120 (2024). https://doi.org/10.1007/s00894-024-05917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05917-0

Keywords

Navigation