Log in

Synthesis and theoretical studies on nitrogen-rich salts of bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Multi-furazan compounds bis[4-nitramino- furazanyl-3-azoxy]azofurazan (ADNAAF) and its derivatives were first synthesized by our research group, and their structures were characterized by IR, 1H-NMR, 13C-NMR spectrums, and element analysis. ADNAAF was synthesized by nitration reaction of bis[4-aminofurazanyl-3-azoxy]azofurazan (ADAAF), and then reacted with ammonium hydroxide, hydrazine hydrate, and guanidine nitrate to obtain three salts marked as salt 1, 2, and 3, respectively. The thermal stabilities of the three salts were supported by the results of DSC analysis, which shows the decomposition temperatures are all above 190 °C. Their densities, enthalpies of formation, and detonation properties were studied by density functional theory (DFT) method. Salt 1 has the best detonation pressure (P), 37.42 GPa, and detonation velocity (D), 8.88 km/s, while salt 2 has the best nitrogen content and heat of detonation (Q), 1.27 kcal mol-1. The detonation properties of salt 1 is similar to that of 1,3,5-trinitro-1,3,5-triazineane (RDX). It means that the ammonium cation can provide the better D and P than the cation of hydrazine and guanidine. The three cations offer the enthalpies of formations in the order of hydrazinium > guanidinium > ammonium.

Nitrogen-rich salts of bis[4-nitraminofurazanyl-3-azoxy]azofurazan(ADNAAF)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  1. Singh RP, Verma RD, Meshri DT, Shreeve JNM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed 45(22):3584–3601

    Article  CAS  Google Scholar 

  2. Bian C, Dong X, Zhang X, Zhou Z, Zhang M, Li C (2015) The unique synthesis and energetic properties of a novel fused heterocycle: 7-nitro-4-oxo-4,8-dihydro-[1,2,4]triazolo[5,1-d][1,2,3,5]tetrazine 2-oxide and its energetic salts. J Mater Chem A 3(7):3594–3601

    Article  CAS  Google Scholar 

  3. Chand D, Parrish DA (2013) Shreeve JnM. Di(1H-tetrazol-5-yl)methanone oxime and 5,5[prime or minute]-(hydrazonomethylene)bis(1H-tetrazole) and their salts: a family of highly useful new tetrazoles and energetic materials. J Mater Chem A 1(48):15383–15389

    Article  CAS  Google Scholar 

  4. Liang L, Wang K, Bian C, Ling L, Zhou Z (2013) 4-nitro-3-(5-tetrazole)furoxan and its salts: synthesis, characterization, and energetic properties. Chem A Eur J 19(44):14902–14910

    Article  CAS  Google Scholar 

  5. Shao Y, Pan Y, Wu Q et al (2012) Comparative theoretical studies on energetic substituted 1,2,4-triazole molecules and their corresponding ionic salts containing 1,2,4-triazole-based cations or anions. Struct Chem 24(5):1429–1442

    Article  Google Scholar 

  6. Wu Q, Zhu W, **ao H (2013) Theoretical design of energetic nitrogen-rich derivatives of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane. J Mol Model 19(8):2945–2954

    Article  CAS  Google Scholar 

  7. **ang F, Wu Q, Zhu W, **ao H (2013) A comparative theoretical study of heterocycle-functionalized tetrazolate- and tetrazolate-1-oxide-based dianionic salts. Can J Chem 91(12):1233–1242

    Article  CAS  Google Scholar 

  8. Wang T, Zheng C, Yang J, Zhang X, Gong X, **a M (2014) Theoretical studies on a new high energy density compound 6-amino-7-nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO). J Mol Model 20(6):1–10

    Google Scholar 

  9. Zhang Q, Shreeve JNM (2014) Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev 114(20):10527–10574

    Article  CAS  Google Scholar 

  10. Zhang X, Zhu W, Wei T, Zhang C, **ao H (2010) Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J Phys Chem C 114(30):13142–13152

    Article  CAS  Google Scholar 

  11. Shao Y, Zhu W, **ao H (2013) Structure–property relationships of energetic nitrogen-rich salts composed of triaminoguanidinium or ammonium cation and tetrazole-based anions. J Mol Graph Model 40(3):54–63

    Article  CAS  Google Scholar 

  12. Bian C (2014) 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (HANTT) and its energetic salts: highly thermally stable energetic materials with low sensitivity. J Mater Chem A 3(1):163–169

    Article  Google Scholar 

  13. Zhang J, Shreeve JNM, Zhang J, Shreeve JNM (2014) 3,3′-dinitroamino-4,4′-azoxyfurazan and its derivatives: an assembly of diverse N–O building blocks for high-performance energetic materials. J Am Chem Soc 136(11):4437–4445

    Article  CAS  Google Scholar 

  14. Solodyuk G, Boldyrev M, Gidaspov B, Nikolaev V (1981) Oxidation of 3, 4-diaminofurazan by some peroxide reagents. Chem Inf 12(36)

  15. Francois EG, Chavez DE, Sandstrom MM (2010) The development of a new synthesis process for 3, 3′-Diamino-4, 4′-azoxyfurazan (DAAF). Propellants Explos Pyrotech 35(6):529–534

    Article  CAS  Google Scholar 

  16. Zheng C, Chu Y, Xu L et al (2016) Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF). J Mol Model 22(6):1–9

    Article  Google Scholar 

  17. Frisch MJ TG, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox JD (2009) Gaussian 09. Gaussian Inc, Wallingford

  18. Rice BM, Hare JJ, Byrd EFC (2007) Accurate predictions of crystal densities using quantum mechanical molecular volumes. J Phys Chem A 111(42):10874–10879

    Article  CAS  Google Scholar 

  19. Qiu L, **ao H, Gong X, Ju X, Zhu W (2007) Crystal density predictions for nitramines based on quantum chemistry. J Hazard Mater 141(1):280–288

    Article  CAS  Google Scholar 

  20. Dunitz JD, Filippini G, Gavezzotti A (2000) A statistical study of density and packing variations among crystalline isomers. Tetrahedron 56(36):6595–6601

    Article  CAS  Google Scholar 

  21. Klapötke TM, Ang H-G (2001) Estimation of the crystalline density of nitramine (N-NO2 based) High Energy Density Materials (HEDM). Propellants Explos Pyrotech 26(5):221–224

  22. Bouhmaida N, Ghermani NE (2005) Elusive contribution of the experimental surface molecular electrostatic potential and promolecule approximation in the empirical estimate of the crystal density. J Chem Phys 122(11):114101

    Article  Google Scholar 

  23. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

  24. Rice BM, Byrd EFC (2013) Evaluation of electrostatic descriptors for predicting crystalline density. J Comput Chem 34(25):2146–2151

    Article  CAS  Google Scholar 

  25. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech 22(5):249–255

    Article  CAS  Google Scholar 

  26. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108(11):4439–4449

    Article  CAS  Google Scholar 

  27. Zhu W, Zhang C, Wei T, **ao H (2011) Computational study of energetic nitrogen-rich derivatives of 1,1′- and 5,5′-bridged ditetrazoles. J Comput Chem 32(10):2298–2312

    Article  CAS  Google Scholar 

  28. Wu Q, Zhu W, **ao H (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4(8):3789–3797

    Article  CAS  Google Scholar 

  29. Wang T, Zhang T, Xu L, Wu X, Gong X, **a M (2014) Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β). J Mol Model 20(12):1–11

    Google Scholar 

  30. Jenkins HDB, Tudela D, Glasser L (2002) Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem 41(9):2364–2367

    Article  CAS  Google Scholar 

  31. Byrd EFC, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    Article  CAS  Google Scholar 

  32. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108(10):1391–1396

    Article  CAS  Google Scholar 

  33. Kamlet MJ, Jacobs SJ (1967) The chemistry of detonations. 1. A simple method for calculating detonation propertied of C-H-N-O explosives. J Chem Phys 48:23–35

    Article  Google Scholar 

  34. Talawar MB, Sivabalan R, Mukundan T et al (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyun Wang or Mingzhu **a.

Appendix

Appendix

The spectrograms were seen in Figs. 4, 5, and 6.

Fig. 4
figure 4

The IR spectrum of ADNAAF

Fig. 5
figure 5

The IR spectrum of salt 1

Fig. 6
figure 6

The IR spectrum of salt 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Chu, Y., Xu, L. et al. Synthesis and theoretical studies on nitrogen-rich salts of bis[4-nitraminofurazanyl-3-azoxy]azofurazan (ADNAAF). J Mol Model 23, 12 (2017). https://doi.org/10.1007/s00894-016-3145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3145-3

Keywords

Navigation