Log in

Repeated matching, career concerns, and firm size

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

I propose a two-period matching model of firms and managers to show that managerial career concerns may not guarantee assortative matching in the labor market for managers. In the model, firms compete for managerial talent, and managers are concerned about their reputations. The market updates managers’ reputations whenever their performance is publicly disclosed, which leads to rematching in a subsequent period. I show that some talented managers sit out the market in an earlier period to secure their reputations in a later period. The size distribution of firms—by influencing the wage distribution of managers—is a key determinant of early sitting out: managers’ sitting out may happen under a Power-law distribution of firm size, whereas it never happens under a uniform distribution. The model highlights the roles of firm size distributions and the effects of labor markets on incentive provision within firms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The literature on firm or city size has shown that the observed data in general exhibits Zipf’s law (that is, Power-law distributions)—in rankings of firms by size or rankings of cities by population, the size of firms or the population of cities is inversely proportional to their rank (Simon and Bonini 1958; Ijiri and Simon 1977; Gabaix 2016; Eeckhout 2004; Luttmer 2007; etc.). Using U.S. data, Axtell (2001) documents that the empirical distribution of firm size approximately follows a Pareto distribution with an exponent 1.059, which supports a Zipf’s law for firms.

  2. In this paper, I take the size distribution as exogenous. Prior studies on firm size distribution since Gibrat (1931), Simon and Bonini (1958), Ijiri and Simon (1977), and Lucas (1978) have proposed potential mechanisms that generate empirically regular firm size distributions. Instead of searching for the determinants of firm size distribution, I explore what distributions of firm size can potentially influence the sorting between firms and managers, by focusing on the participation decisions of managers.

  3. Mangin (2017) endogenizes workers’ bargaining power based on a search theoretic model and shows that workers’ effective bargaining power—and in turn their share from the match outcome—depends on the distribution of firms’ private signals about their productivity. While the private information on the firm side matters in Mangin (2017), in the current paper, there is no private information on either side, and the friction comes from uncertain future outside options due to reputation changes following performance.

  4. Axtell (2001) finds that the observed distribution of firm size in the U.S. approximately follows a Pareto distribution. Braguinsky et al. (2011)—using Portuguese data—and Garicano et al. (2016)—using French data—find that the empirical distributions of firm size in their respective countries differ significantly from a Pareto distribution. Due to cross-country differences in observed firm size distributions, this paper predicts that managerial career concerns and their impact on the managerial labor supply will differ across countries.

  5. See Eeckhout (2018) for a survey on sorting in the labor market, with a focus on the role of firm size.

  6. The role of endogenous types in designing an optimal mechanism has also gained recent interest in the dynamic mechanism design literature. See, for example, Pavan (2017, Ch. 7) for a survey.

  7. As in this paper, Määttänen and Terviö (2014) highlight the importance of the distributions of attributes in two-sided matching based on an assignment model of households and houses. In particular, they show that how increased income inequality affects housing prices depends on the shapes of the distributions of household income and house quality. The present paper sheds light on the importance of firm size distribution in affecting managerial career concerns and, consequently, labor participation decisions.

  8. If \({y}_{0}\) is sufficiently large, some firms may shut down their businesses due to managers’ early sitting out. This does not qualitatively affect the main results in this study.

  9. The assumption that the market’s evaluation of each manager is characterized as a single dimensional characteristic is made for analytical simplicity. Without agency problems, the extension to multi-dimensional attributes is considered in Eisfeldt and Kuhnen (2013) and Pan (2017), where the multiple attributes are summarized by a single dimensional statistic through a linear combination of attributes. Edmans and Gabaix (2011) and Bandiera et al. (2015) consider a manager’s risk attitude, talent, and moral hazard.

  10. While managers’ true abilities are assumed to be binary, their reputations are continuous. More importantly, managers’ true types are not perfectly revealed because performance is a noisy signal about managers’ hidden abilities. In this regard, managers’ reputations can be viewed as their observable types; manager \(\gamma [i]\)’s performance is drawn from a distribution \({f}_{i}\left(x\right)=\gamma \left[i\right]\cdot {f}_{g}\left(x\right)+\left(1-\gamma \left[i\right]\right)\cdot {f}_{b}(x)\).

  11. I thank an anonymous reviewer for this interpretation.

  12. Technically, if \({w}_{0}\) is sufficiently small (or zero) and some managers strictly prefer to join due to period 2 matching, then they might be willing to join and work in period 1 without any pay (or even work by paying the firm) but still enjoy the benefit of working rather than sitting out. Whether such payments have realistic interpretations in the market for managerial positions would constitute an unnecessary digression without changing the result qualitatively.

  13. In each period, a firm can always hire a manager at the market value, and any deviation by a single firm changes neither a manager’s current market value nor the future rematching patterns.

  14. In practice, managers’ compensation packages take various forms, such as convex or linear increasing in performance. Since managers are risk neutral in the model, what matters is the expected compensation captured by \(\omega (i)\), which can be interpreted as the summary measure of compensation packages.

  15. That is, a mass of good type managers is written as \({\int }_{0}^{1}\gamma dH(\gamma )={\int }_{0}^{1}\gamma d{H}_{{\mu }_{1}}(\gamma )\).

  16. Given that \(\gamma [i]\) is not the lowest reputation among the matched managers, \({\omega }^{SC}\left(S\left[j\right],i\right)-\epsilon\) for \(\epsilon >0\) is not incentive compatible for firms that are smaller but close to \(S\left[j\right]\), because those smaller firms can bid a price higher than \({\omega }^{SC}\left(S\left[j\right],i\right)-\epsilon\) for manager \(\gamma [i]\). Thus, the market value for manager \(\gamma [i]\) is not lower than \({\omega }^{SC}\left(S\left[j\right],i\right)\), and the participation incentive (\({\Pi }_{i}^{NP}<{\Pi }_{i}^{P}\)) does not reduce that market value. However, if \(\gamma [k]\) is the lowest reputation among matched managers and \({\Pi }_{k}^{NP}<{\Pi }_{k}^{P}\), then his market value \({\omega }_{1}\left(k\right)\) is lower than \({w}_{0}\) because it is determined by the binding participation constraint, \({\omega }_{1}\left(k\right)+{\Pi }_{k}^{P}-{\Pi }_{k}^{NP}={w}_{0}.\) In this case, manager \(\gamma [k]\)’s negative value of sitting out lowers the market values of all matched managers whose reputations are greater than \(\gamma [k]\).

  17. In addition to the characteristics of firm \(S[i]\) and manager \(\gamma [i]\), firm \(S[i]\)’s share depends on the left tails of distributions of firms and managers because of the market values of managers who are below rank \(i\).

  18. I thank an anonymous reviewer for suggesting this direction.

References

  • Ales L, Sleet C (2016) Taxing top CEO incomes. Am Econ Rev 106(11):3331–3366

    Article  Google Scholar 

  • Anderson A (2015) A dynamic generalization of Becker’s assortative matching result. J Econ Theory 159:290–310

    Article  Google Scholar 

  • Anderson A, Smith L (2010) Dynamic matching and evolving reputations. Rev Econ Stud 77(1):3–29

    Article  Google Scholar 

  • Axtell R (2001) Zipf distribution of U.S. firm sizes. Science 293(5536):1818–1820

    Article  Google Scholar 

  • Bandiera O, Guiso L, Prat A, Sadun R (2015) Matching firms, managers, and incentives. J Law Econ 33(3):623–681

    Google Scholar 

  • Becker G (1973) A theory of marriage: part i. J Polit Econ 81(4):813–846

    Article  Google Scholar 

  • Braguinsky S, Branstetter LG, Regateiro A (2011) The incredible shrinking Portuguese firm. National Bereau of Economic Research.

  • Chade H, Eeckhout J, Smith L (2017) Sorting through search and matching models in economics. J Econ Lit 55(2):493–544

    Article  Google Scholar 

  • Doval R (2022) Dynamically stable matching. Theor Econ 17:687–724

    Article  Google Scholar 

  • Edmans A, Gabaix X (2011) The effect of risk on the CEO market. Rev Financ Stud 24(8):2822–2863

    Article  Google Scholar 

  • Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451

    Article  Google Scholar 

  • Eeckhout J (2018) Sorting in the labor market. Ann Rev Econ 10:1–29

    Article  Google Scholar 

  • Eisfeldt A, Kuhnen MC (2013) CEO turnover in a competitive assignment framework. J Financ Econ 109(2):351–372

    Article  Google Scholar 

  • Fellingham J, Wolfson M (1985) Taxes and risk sharing. Account Rev 60:10–17

    Google Scholar 

  • Friedman D, Isaac RM, James D, Sunder S (2014) Risky curves: on the empirical failure of expected utility. Routledge, London

    Book  Google Scholar 

  • Gibrat R (1931) Les inégalits économiques. Sirey

  • Gabaix X (1999) Zipf’s law for cities: an explanation. Q J Econ 114(3):739–767

    Article  Google Scholar 

  • Gabaix X (2016) Power laws in economics: an introduction. J Econ Perspect 30(1):185–206

    Article  Google Scholar 

  • Gabaix X, Landier A (2008) Why has CEO pay increased so much? Q J Econ 123(1):49–100

    Article  Google Scholar 

  • Garicano L, Lelarge C, Van Reenen J (2016) Firm size distortions and the productivity distribution: evidence from France. Am Econ Rev 106(11):3449–3479

    Article  Google Scholar 

  • Gilchrist W (2000) Statistical modelling with quantile functions. CRC Press, London

    Book  Google Scholar 

  • Hirshleifer D, Suh Y (1992) Risk, managerial effort, and project choice. J Financ Intermed 2(3):308–345

    Article  Google Scholar 

  • Holmstrom B (1982) Managerial incentive problems—a dynamic perspective. In: Essays in economics and management in honor of lars wahlbeck. Swedish School of Economics, Helsinki, Finland

  • Holmstrom B (1999) Managerial incentive problems: a dynamic perspective. Rev Econ Stud 66(1):169–182

    Article  Google Scholar 

  • Ijiri Y, Simon HA (1964) Business firm growth and size. Am Econ Rev 54(2):77–89

    Google Scholar 

  • Ijiri Y, Simon HA (1974) Interpretations of departures from the Pareto curve firm-size distributions. J Polit Econ 82(2):315–331

    Article  Google Scholar 

  • Ijiri Y, Simon HA (1977) Skew distributions and the sizes of business firms, vol 24. North Holland, New York

    Google Scholar 

  • Kaya A, Vereshchagina G (2015) Moral hazard and sorting in a market for partnerships. Econ Theor 60:73–121

    Article  Google Scholar 

  • Lambert R (1986) Executive effort and selection of risky projects. RAND J Econ 17:77–88

    Article  Google Scholar 

  • Laux V (2015) Executive pay, innovation, and risk-taking. J Econ Manag Strategy 24(2):275–305

    Article  Google Scholar 

  • Legros P, Newman AF (2007) Beauty is a beast, frog is a prince: assortative matching with nontransferabilities. Econometrica 75(4):1073–1102

    Article  Google Scholar 

  • Li S, Sun H, Chen P (2013) Assortative matching of risk-averse agents with endogenous risk. J Econ 109:27–40

    Article  Google Scholar 

  • Li S, Sun H, Wang T, Yu J (2016) Assortative matching and risk sharing. J Econ Theory 163:248–275

    Article  Google Scholar 

  • Lucas RE (1978) On the size distribution of business firms. Bell J Econ 9:508–523

    Article  Google Scholar 

  • Luttmer EG (2007) Selection, growth, and the size distribution of firms. Q J Econ 122(3):1103–1144

    Article  Google Scholar 

  • Määttänen N, Terviö M (2014) Income distribution and housing prices: an assignment model approach. J Econ Theory 151:381–410

    Article  Google Scholar 

  • Mangin S (2017) A theory of production, matching, and distribution. J Econ Theory 172:376–409

    Article  Google Scholar 

  • Manso G (2011) Motivating innovation. J Financ 66(5):1823–1860

    Article  Google Scholar 

  • Masson RT (1972) The creation of risk aversion by imperfect capital markets. Am Econ Rev 62(1/2):77–86

    Google Scholar 

  • Pan Y (2017) The determinants and impact of executive-firm matches. Manag Sci 63(1):185–200

    Article  Google Scholar 

  • Parzen E (1979) Nonparametric statistical data modeling. J Am Stat Assoc 74(365):105–121

    Article  Google Scholar 

  • Pavan A (2017) Dynamic mechanism design: robustness and endogenous types. In: Advances in economics and econometrics: eleventh world congress, pp 1–62

  • Rudin W (1976) Principles of mathematical analysis, vol 3. McGraw-hill, New York

    Google Scholar 

  • Sattinger M (1993) Assignment models of the distribution of earnings. J Econ Lit 31(2):831–880

    Google Scholar 

  • Serfes K (2005) Endogenous matching in a market with heterogeneous principals and agents. Int J Game Theory 36:587–619

    Article  Google Scholar 

  • Shi S (2001) Frictional assignment. I. efficiency. J Econ Theory 98(2):232–260

    Article  Google Scholar 

  • Shimer R, Smith L (2000) Assortative matching and search. Econometrica 68(2):343–369

    Article  Google Scholar 

  • Simon H, Bonini CP (1958) The size distribution of business firms. Am Econ Rev 48(4):607–617

    Google Scholar 

  • Terviö M (2006) Transfer fee regulations and player development. J Eur Econ Assoc 4(5):957–987

    Article  Google Scholar 

  • Terviö M (2008) The difference that CEOs make: an assignment model approach. Am Econ Rev 98:642–668

    Article  Google Scholar 

  • Wright DJ (2004) The risk and incentives trade-off in the presence of heterogeneous managers. J Econ 83(3):209–223

    Article  Google Scholar 

  • Zhao H (2018) Executive labor market segmentation: How local market density affects incentives and performance. J Corp Finan 50:1–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunhee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I would like to thank Neil Brisley, Carlos Corona, Laura Doval, Jonathan Glover, Itay Goldstein, Isa Hafalir, Daisuke Hirata, Hyun Hwang, Hideshi Itoh, Raffi Indjejikian (discussant), Chandra Kanodia, Volker Laux, Pierre **ghong Liang, Lillian Mills, Daisuke Oyama, Gordon Richardson, Shyam Sunder, Baohua **n, Minlei Ye, workshop participants at Carnegie Mellon University, Chinese University of Hong Kong, City University of Hong Kong, Hitotsubashi University (Microeconomic theory workshop), National Taipei University (Economic theory workshop), Sun Yat-Sen University (Economic theory workshop), University of Minnesota, University of Texas at Austin, University of Tokyo (Microeconomic theory workshop), University of Toronto, Waterloo University, 2018 AAA Management Accounting Midyear Meeting, 2018 Hong Kong Junior Accounting Faculty Conference, and 2017 Junior Accounting Theory Conference for helpful comments. I assume full responsibility for any errors.

Appendices

Appendix

Whenever there is no confusion, I omit the subscript for time index throughout the Appendix.

A.1.: Proof of Lemma 1

Proof

As in Terviö (2008), the number of sorting constraints is substantially reduced because the sorting constraint \(SC\left(i,k\right)\) is implied by \(SC\left(i,j\right)+SC(j,k)\). To derive the market value of managers, consider the sorting constraint \(SC\left(i,i+\epsilon \right), \epsilon >0\) and normalize it by \(-\epsilon\) to find the slope of the market value.

$$\frac{Y\left(S\left[i\right],\gamma [i]\right)-Y\left(S\left[i\right],\gamma \left[i-\left(-\epsilon \right)\right]\right)}{-\epsilon }\le \frac{\omega \left(i\right)-\omega \left(i-\left(-\epsilon \right)\right)}{-\epsilon }\Rightarrow \underset{\epsilon \to 0}{{\text{lim}}}{\omega }^{\mathrm{^{\prime}}}\left(i\right)=-{Y}_{\gamma }\left(S\left[i\right],\gamma [i]\right){\gamma }^{\mathrm{^{\prime}}}[i],$$

where \({Y}_{\gamma }\) is the partial derivative with respect to reputation \(\gamma (=\gamma \left[i\right])\) and \({\gamma }{\prime}\left[i\right]=\frac{d}{di}{H}^{-1}\left(M-i\right)\). Use the inverse function theorem,

$${\gamma }^{\mathrm{^{\prime}}}\left[i\right]=-\frac{1}{h\left({H}^{-1}\left(M-i\right)\right)}=-\frac{1}{h\left(\gamma \left[i\right]\right)}<0.$$

Because of the (No rents to the least talented manager) condition, the last matched manager \(\gamma [1]\) receives his per-period reservation utility, \({w}_{0}\), in this benchmark. Thus, the market value for manager \(\gamma [i]\) for \(i\le 1\) is:

$$\omega \left( i \right) = \omega \left( 1 \right)\underbrace {{ - \int\limits_{i}^{1} {Y_{\gamma } \left( {S\left[ j \right],\gamma [j]} \right)\gamma ^{{\prime }} [j]dj} }}_{{{\text{reputation}}\,{\text{premium}}}},$$

where \(\omega \left(1\right)={w}_{0}\). All managers \(\gamma \left[i\right], i\in (1,M]\) receive \({w}_{0}\). Because \({\Pi }_{i}^{P}={\Pi }_{i}^{NP}=0\), \(\omega \left(i\right)\ge {w}_{0}\) for \(i\le 1\) and \(\omega \left(i\right)={w}_{0}\) for \(i>1\), which satisfies managers’ participation constraints.

A.2.: Manager \({\varvec{i}}\) with \({\varvec{\pi}}\left({\varvec{i}}\right)>0\) is always matched in period 2 for any \({\varvec{M}}>1\)

Proof

Let \(\gamma =\gamma [i]\) with \(\pi \left(i\right)>0\) be given, and let \({H}_{c}\) denote a conjectured period 2 reputation distribution. By sitting out, manager \(\gamma [i]\) maintains his reputation \(\gamma\), but the rank will be \({i}_{\phi }\) under the reputation distribution \({H}_{c}\). For manager \(\gamma [i]\) to consider sitting out (instead of participation), the manager must be matched in period 2 with certainty; that is, \({i}_{\phi }<1, {\text{where}} M-{i}_{\phi }={H}_{c}(\gamma [{i}_{\phi }])\) is required.

Let \(\lambda \equiv \underset{i}{{\text{sup}}}\{i|\pi \left(i\right)>0\}<1\). Recall \(\gamma \left[\lambda \right]={H}^{-1}\left(M-\lambda \right)\). Manager \(\gamma \left[{\lambda }_{\phi }\right]\) is matched in period 2 if

$$M-{H}_{c}\left(\gamma \left[{\lambda }_{\phi }\right]\right)<1\iff M<1+{H}_{c}\left({H}^{-1}\left(M-\lambda \right)\right),$$
(9)

where I use \(\gamma \left[{\lambda }_{\phi }\right]=\gamma \left[\lambda \right]={H}^{-1}\left(M-\lambda \right)\). If \(H={H}_{c}\), then inequality (10) is equivalent to \(0<1-\lambda\). Thus, it is always satisfied for any \(M\) because \(\lambda <1\).

Recall that \({\int }_{0}^{1}\gamma dH={\int }_{0}^{1}\gamma d{H}_{c}\) because the measure of good type managers is fixed. However, after period 1 production, matched managers’ reputations change. Hence, \({H}_{c}\) is a mean-preserving spread of \(H\); thus, \(H\) second-order stochastically dominates \({H}_{c}\). This suggests that \({H}_{c}^{-1}\left(M-1\right)<{H}^{-1}\left(M-1\right)\): the manager with rank \(i=1\) under the distribution \({H}_{c}\) has a lower reputation than the manager with rank \(i=1\) under the distribution \(H\).

Depending on where \(\lambda\) is located in period 1, there are two possibilities: \(\lambda >{\lambda }_{\phi }\) or \(\lambda \le {\lambda }_{\phi }\). If \(\lambda >{\lambda }_{\phi }\), then manager \(\gamma \left[{\lambda }_{\phi }\right]\) is ranked higher under \({H}_{c}\) than under \(H\). In this case, \({H}_{c}\left(\gamma \left[{\lambda }_{\phi }\right]\right)=M-{\lambda }_{\phi }\) is greater than \(M-\lambda\), thereby satisfying inequality (10) for any \(M\). Therefore, manager \(\gamma \left[{\lambda }_{\phi }\right]\) is matched in period 2 with certainty. On the other hand, if \(\lambda \le {\lambda }_{\phi }\), then manager \(\gamma \left[{\lambda }_{\phi }\right]\) is ranked the same as or lower than the rank under \(H\). In this case, \({H}_{c}\left(\gamma \left[{\lambda }_{\phi }\right]\right)=M-{\lambda }_{\phi }\) is less than \(M-\lambda\). However, because \({H}_{c}^{-1}\left(M-1\right)<{H}^{-1}\left(M-1\right)\) and \(\lambda <1\), and I know \(\gamma \left[{\lambda }_{\phi }\right]=\gamma \left[\lambda \right]\), regardless of production technology, manager \(\gamma \left[{\lambda }_{\phi }\right]\) can never be ranked at 1 under \({H}_{c}\), i.e., \({\lambda }_{\phi }<1\). Thus, regardless of \(M\), manager \(\gamma \left[{\lambda }_{\phi }\right]\) is matched in period 2 with certainty.

A.3.: The derivation of the posterior distribution of reputation

Recall that \(H\left(\gamma \left[i\right]\right)=M-i\). For notational convenience, I omit the rank \(i\) whenever there is no confusion, but keep \(i\) in \(H\left(\gamma \left[i\right]\right)\) to use the matching function \({\mu }_{1}\left(i\right)\). The derivation is similar with Anderson and Smith (2010) and Anderson (2015). Let \(\tau (s|\gamma )\) denote the probability that reputation \(\gamma\) is updated to at most \(s\), conditional on \({\mu }_{1}\left(i\right)\ne u\) for \(\gamma \left[i\right]\) (\(=\gamma\)). Then, the posterior distribution of matched managers is:

$$\widehat{H}\left(z\right)={\int }_{0}^{z}{\int }_{{\mu }_{1}\left(i\right)\ne u}\tau \left(s|\gamma \right)dH(\gamma [i])dsss$$

Recall that the updated reputation is \(\gamma \frac{{f}_{g}\left(x\right)}{{f}_{\gamma }(x)}\) for performance \(x\), and that \(\frac{{f}_{g}\left(x\right)}{{f}_{\gamma }(x)}\) is monotone increasing in \(x\). Thus, if there is some performance \(x\) that updates \(\gamma\) to \(s\), then it is unique. Let \(\frac{{f}_{g}\left(x\right)}{{f}_{\gamma }(x)}\equiv l\left(x\right)\). Because \(l\left(x\right)\) is monotone increasing, it is invertible; thus,

$$s=\gamma \frac{{f}_{g}\left(x\right)}{{f}_{\gamma }(x)}=\gamma \times l\left(x\right)\Rightarrow x={l}^{-1}\left(\frac{s}{\gamma }\right).$$

Therefore, the above posterior is rewritten as:

$$\widehat{H}\left(z\right)={\int }_{0}^{z}{\int }_{{\mu }_{1}\left(i\right)\ne u}{F}_{\gamma }\left({l}^{-1}\left(\frac{s}{\gamma }\right)\right)dH(\gamma [i])ds.$$

When matching takes place in period 1, every manager \(\gamma\) computes the expected posterior based on his conjectured matching \({\mu }_{c}\) (which is the same as \({\mu }_{1}\) in equilibrium).

A.4.: Quantile, quantile density, and density quantile functions

For a strictly increasing cumulative distribution function \(G(S)\), let \(S\left[i\right]\) denote a quantile function such that.

$$S\left[i\right]={G}^{-1}\left(1-i\right), i\in \left[\mathrm{0,1}\right].$$

The quantile density function is defined as (Parzen 1979):

$$\frac{dS\left[i\right]}{di}={S}^{\mathrm{^{\prime}}}\left[i\right]=-\frac{1}{g\left(S\left[i\right]\right)}.$$

The reciprocal of the quantile density function, \(g(S\left[i\right])\), is called a density quantile function (Gilchrist 2000).

The following lemma is useful for Proposition 1.

Lemma 2

\(\pi \left(i\right)>0\) is equivalent to

$$\begin{aligned} & F_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - \left( {V\left( {i_{x} } \right) - V\left( {i_{\phi } } \right)} \right)\left| x \right\rangle m} \right] \\ & < \overline{F}_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - \left( {V\left( {i_{\phi } } \right) - V\left( {i_{x} } \right)} \right)|x < m} \right], \\ \end{aligned}$$
(10)

where \({\overline{F} }_{\gamma \left[i\right]}\left(m\right)=1-{F}_{\gamma \left[i\right]}(m)\) and \(V\left(i\right)={\int }_{i}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl\) denotes firm \(S[i]\)’s share of the match surplus.

A.5.: Proof of Lemma 2

Proof

To compare \({\Pi }_{i}^{P}\) with \({\Pi }_{i}^{NP}\) in period 1, manager \(\gamma [i]\) conjectures period 1 matching. Let \({\mu }_{c}\) denote a conjectured period 1 matching function, and let \(1\) denote an indicator function over the set \(\{\gamma [i]|{\mu }_{c}\left(i\right)=u {\text{for}} \gamma [i]\in [\mathrm{0,1}]\}\) where \(1\) equals 1 if a manager is unmatched in period 1, or zero if matched. The posterior distribution of reputation among matched managers is characterized as in A.3:

$${\widehat{H}}_{c}\left(z\right)={\int }_{0}^{z}{\int }_{{\mu }_{c}\left(i\right)\ne u}{F}_{\gamma }\left({l}^{-1}\left(\frac{s}{\gamma }\right)\right)dH(\gamma [i])ds.$$

Therefore, given \({\mu }_{c}\), the reputation distribution at the beginning of period 2 is:

$$H_{c} \left( \gamma \right) = \underbrace {{\int _{0}^{\gamma } \hat{h}_{c} \left( z \right)dz}}_{{{\text{matched}}}} + \underbrace {{\int _{0}^{\gamma } h\left( z \right)1dz}}_{{{\text{unmatched}}}},$$

where \({\widehat{h}}_{c}\) and \(h\), respectively denote the probability density function of \({\widehat{H}}_{c}\) and \(H\). Let \({h}_{c}\) denote the probability density function of \({H}_{c}\). Period 2 matching is assortative, so, \({\mu }_{2}\left(i\right)\ne u\) if \(\gamma [i]\ge {H}_{c}^{-1}(M-1)\) and \({\mu }_{2}\left(i\right)=u\) if \(\gamma [i]<{H}_{c}^{-1}(M-1)\). Thus, given \({\mu }_{c}\), the market value in period 2, \({\omega }_{c}\), is characterized as follows (Lemma 1).

$$\omega _{c} \left( i \right) = w_{0} \underbrace {{ - \int _{i}^{1} Y_{\gamma } \left( {S\left[ j \right],\gamma [j]} \right)\gamma ^{\prime } \left[ j \right]dj}}_{{{\text{reputation}}\,{\text{premium}}}},$$

where \({\gamma }{\prime}\left[j\right]=\frac{\partial }{\partial j}{H}_{c}^{-1}\left(M-j\right)=-\frac{1}{{h}_{c}\left({H}_{c}^{-1}\left(M-j\right)\right)}=-\frac{1}{{h}_{c}(\gamma \left[j\right])}<0\). Recall that \({Y}_{\gamma }\left(S\left[j\right],\gamma [j]\right)=\left({m}_{g}-{m}_{b}\right)S[j]\). Thus, the reputation premium is:

$$\begin{aligned} - \mathop \int \limits_{i}^{1} Y_{\gamma } \left( {S\left[ j \right],\gamma \left[ j \right]} \right)\gamma^{\prime}\left[ j \right]dj & = \left( {m_{g} - m_{b} } \right)\mathop \int \limits_{i}^{1} S\left[ j \right]\left( { - \gamma^{\prime}\left[ j \right]} \right)dj \\ & = \left( {m_{g} - m_{b} } \right)\left( {\mathop \int \limits_{i}^{1} S^{\prime}\left[ j \right]\gamma \left[ j \right] - \left( {S\left[ j \right]\gamma \left[ j \right]} \right){\prime} dj} \right) \\ \end{aligned}$$
(11)

The second equality is because of the product rule: \({\left(S\left[j\right]\gamma \left[j\right]\right)}{\prime}=S\left[j\right]{\gamma }{\prime}\left[j\right]+{S}{\prime}\left[j\right]\gamma \left[j\right]\). Use the fundamental theorem of calculus:

$${\int }_{i}^{1}{S}^{\mathrm{^{\prime}}}\left[j\right]\gamma \left[j\right]-{\left(S\left[j\right]\gamma \left[j\right]\right)}^{\mathrm{^{\prime}}}dj={\int }_{i}^{1}{S}^{\mathrm{^{\prime}}}\left[j\right]\gamma \left[j\right]dj+\left(S\left[i\right]\gamma \left[i\right]-S\left[1\right]\gamma \left[1\right]\right).$$
(12)

Let \({i}_{x}\) and \({i}_{\phi }\) denote, respectively, a rank in period 2 upon period 1 performance of \(x\) and rank in the case the manager sits out. Notice that, given \({\mu }_{c}\) (which includes potential sitting out by some managers), individual manager \(\gamma [i]\)’s participation or sitting out does not change the distribution of managers’ reputations in period 2. Hence, manager \(\gamma [i]\) compares the expected payoff from participation with that from sitting out based on the distribution \({H}_{c}\left(\gamma \right)\).

$${\Pi }_{i}^{P}={\int }_{\underline{x}}^{\overline{x}}{\omega }_{c}\left({i}_{x}\right){f}_{\gamma [i]}\left(x\right)dx, {\Pi }_{i}^{NP}={\omega }_{c}\left({i}_{\phi }\right),$$

where \({\omega }_{c}(i)\) is involving \({H}_{c}\left(\gamma \right)\). In equilibrium, all managers’ conjectured matching is consistent; thus, \({\mu }_{c}={\mu }_{1}\). Therefore, \({\omega }_{c}\left(i\right)={\omega }_{2}(i)\).

Recall that \({f}_{g}\) and \({f}_{b}\) are crossing at \(x=m\); thus, \(\gamma \left[{i}_{m}\right]=\gamma \left[i\right]=\gamma \left[{i}_{\phi }\right]\). For \(x>m, \gamma [{i}_{x}]>\gamma [i]\), and for \(x<m,\gamma \left[{i}_{x}\right]<\gamma [i]\). The value of sitting out can be written as follows:

$$\pi \left(i\right)={\Pi }_{i}^{NP}-{\Pi }_{i}^{P}={\omega }_{2}\left({i}_{\phi }\right)-{\int }_{\underline{x}}^{\overline{x}}{\omega }_{2}\left({i}_{x}\right){f}_{\gamma [i]}\left(x\right)dx.$$
$$= \underbrace {{\int _{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} }}^{m} \left( {\omega _{2} \left( {i_{\phi } } \right) - \omega _{2} \left( {i_{x} } \right)} \right)f_{{\gamma [i]}} \left( x \right)dx}}_{{{\text{down}}\,{\text{side}}}} - \underbrace {{\int _{m}^{{\bar{x}}} \left( {\omega _{2} \left( {i_{x} } \right) - \omega _{2} \left( {i_{\phi } } \right)} \right)f_{{\gamma [i]}} \left( x \right)dx}}_{{{\text{upside}}}}.$$

Here, \(\pi \left(i\right)>0\) if the downside potential is greater than the upside potential. Note that

$${\int }_{m}^{\overline{x}}\left({\omega }_{2}\left({i}_{x}\right)-{\omega }_{2}\left({i}_{\phi }\right)\right){f}_{\gamma [i]}\left(x\right)dx=\left({m}_{g}-{m}_{b}\right){\int }_{m}^{\overline{x}}{f}_{\gamma [i]}\left(x\right){\int }_{{i}_{x}}^{{i}_{\phi }}S\left[l\right]\left(-{\gamma }^{\mathrm{^{\prime}}}\left[l\right]\right)dldx.$$

Use (12) and (13),

$${\int }_{m}^{\overline{x}}{f}_{\gamma \left[i\right]}\left(x\right){\int }_{{i}_{x}}^{{i}_{\phi }}S\left[l\right]\left(-{\gamma }{\prime}\left[l\right]\right)dldx={\int }_{m}^{\overline{x}}{f}_{\gamma \left[i\right]}\left(x\right){\int }_{{i}_{x}}^{{i}_{\phi }}{S}{\prime}\left[l\right]\gamma \left[l\right]-{\left(S\left[l\right]\gamma \left[l\right]\right)}{\prime}dldx={\int }_{m}^{\overline{x}}{f}_{\gamma \left[i\right]}\left(x\right)\left({\int }_{{i}_{x}}^{{i}_{\phi }}{S}{\prime}\left[l\right]\gamma \left[l\right]dl+S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]\right)dx$$
$$={\int }_{m}^{\overline{x}}{f}_{\gamma \left[i\right]}\left(x\right)\left(S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]\right)dx+{\int }_{m}^{\overline{x}}{f}_{\gamma \left[i\right]}\left(x\right){\int }_{{i}_{x}}^{{i}_{\phi }}{S}{\prime}\left[l\right]\gamma \left[l\right]dldx$$
$$= \underbrace {{\int _{m}^{{\bar{x}}} f_{{\gamma [i]}} \left( x \right)\left( {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right]} \right)dx}}_{{{\text{total}}\,{\text{size}}\,{\text{of}}\,{\text{the}}\,{\text{surplus}}}} - \underbrace {{\int _{m}^{{\bar{x}}} f_{{\gamma \left[ i \right]}} \left( x \right)\int _{{i_{x} }}^{{i_{\phi } }} \frac{{\gamma \left[ l \right]}}{{g\left( {S\left[ l \right]} \right)}}dldx}}_{{{\text{slope}}\,{\text{(firm's}}\,{\text{share)}}}}.$$

The last equality uses that \({S}{\prime}\left[l\right]=-\frac{1}{g\left({G}^{-1}\left(1-l\right)\right)}=-\frac{1}{g\left(S\left[l\right]\right)}.\) Because \(\gamma \left[l\right]\) is continuous, and \(g\left(S\left[l\right]\right)\) is strictly positive and continuous, this implies that \(\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}\) is continuous. Thus, \(\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}\) is integrable. Here, the slope effect is determined by its density quantile function \(g(S\left[i\right])\). Technically, \({S}{\prime}\left[j\right]\gamma \left[j\right]\) represents the slope of trace of \(S\left[j\right]\gamma \left[j\right]\) for plane \(\gamma \left[j\right]\) and captures how fast firm size changes with rank when \(\gamma \left[j\right]\) is fixed. The downside potential can be similarly written as follows. For simplicity, normalize it by \(\left({m}_{g}-{m}_{b}\right)\).

$$\begin{aligned} & \frac{1}{{\left( {m_{g} - m_{b} } \right)}}\mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\left( {\omega_{2} \left( {i_{\phi } } \right) - \omega_{2} \left( {i_{x} } \right)} \right)dx = \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{\phi } }}^{{i_{x} }} S\left[ l \right]\left( { - \gamma^{\prime}\left[ l \right]} \right)dldx \\ & = \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\left( {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - \mathop \int \limits_{{i_{\phi } }}^{{i_{x} }} \left( { - S^{\prime}\left[ l \right]} \right)\gamma \left[ l \right]dl} \right)dx \\ & = \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\left( {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right]} \right)dx - \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{\phi } }}^{{i_{x} }} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dldx \\ \end{aligned}$$

Therefore, \(\pi \left(i\right)>0\) can be written as:

$$\begin{aligned} & \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\left( {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right]} \right)dx - \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{\phi } }}^{{i_{x} }} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dldx \\ & > \mathop \int \limits_{m}^{{\overline{x}}} f_{\gamma \left[ i \right]} \left( x \right)\left( {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right]} \right)dx - \mathop \int \limits_{m}^{{\overline{x}}} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{x} }}^{{i_{\phi } }} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dldx \\ & \Leftrightarrow F_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right]{|}x < m} \right] - \mathop \int \limits_{{\underline {x} }}^{m} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{\phi } }}^{{i_{x} }} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dldx \\ & > \overline{F}_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right]{|}x > m} \right] - \mathop \int \limits_{m}^{{\overline{x}}} f_{\gamma \left[ i \right]} \left( x \right)\mathop \int \limits_{{i_{x} }}^{{i_{\phi } }} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dldx. \\ \end{aligned}$$

Let \(V\left(i\right)\equiv {\int }_{i}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl, i\in \left[\mathrm{0,1}\right]\) denote firm \(S[i]\)’s share. Then, from rank \({i}_{x}\) to \({i}_{\phi }\),

\({\int }_{{i}_{x}}^{{i}_{\phi }}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl=V\left({i}_{x}\right)-V\left({i}_{\phi }\right)\)Then, \(\pi \left(i\right)>0\) is equivalent to

\({F}_{\gamma \left[i\right]}\left(m\right)E\left[S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]-\left(V\left({i}_{x}\right)-V\left({i}_{\phi }\right)\right)|x>m\right]<{\overline{F} }_{\gamma \left[i\right]}\left(m\right)E\left[S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]-S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-\left(V\left({i}_{\phi }\right)-V\left({i}_{x}\right)\right)|x<m\right].\)

A.6.: Proof of Proposition 1

Proof

The proof consists of three steps. Step 1) I first derive a firm size threshold above which no distortion takes place in equilibrium. Step 2) For firms that are below the threshold, I then constructively find period 1 matching that involves a discontinuity due to the benefit of sitting out. Step 3) Lastly, I check if the outcome of Step 2 satisfies the conditions in the definition of equilibrium.

Step 1) Let \(\pi \left(i\right)>0\) and \([\eta , \lambda ]\) be given, where \(\eta =\underset{i}{{\text{inf}}} \{i|\pi \left(i\right)>0\}\) and \(\lambda =\underset{i}{{\text{sup}}} \{i|\pi \left(i\right)>0\}\). Because \(\gamma \left[0\right]=1\), any realized performance does not change the reputation level and its rank in period 2. Moreover, individual manager \(\gamma \left[0\right]\)’s participation or sitting out does not change the distribution of reputation; thus, \(\pi \left(0\right)=0\). This implies that \(0<\eta \le \lambda\). Because \(\gamma \left[1\right]\) has an upside but no downside potential for participation, \(\pi \left(1\right)\le 0\), implying that \(\eta \le \lambda <1\).

Claim 1:

\(\pi (i)\) is continuous.

Proof of Claim 1

Because \(\pi \left(i\right)=-{\int }_{{i}_{\phi }}^{1}{Y}_{\gamma }\times {\gamma }{\prime}\left[j\right]dj+{\int }_{\underline{x}}^{\overline{x}}{\int }_{{i}_{x}}^{1}{Y}_{\gamma }\times {\gamma }{\prime}\left[j\right]dj{f}_{\gamma \left[{i}_{x}\right]}\left(x\right)dx\), it is sufficient to show that \(\int {Y}_{\gamma }\times {\gamma }{\prime}[j]dj\) is continuous. Recall that the distribution functions \(G\) and \(H\) are smooth and strictly increasing, and \(\widehat{H}\) is piecewise smooth. Thus, the corresponding quantile function \(S[j]\) is smooth and \(\gamma [j]\) (at the beginning of period 2) is piecewise smooth. Therefore, \({Y}_{\gamma }\times {\gamma }{\prime}[j]\) is Riemann integrable over its domain. Then, the integral of \({Y}_{\gamma }\times {\gamma }{\prime}[j]\), (i.e., \(\int {Y}_{\gamma }\times {\gamma }{\prime}[j]dj\)), is differentiable; thus, \(\int {Y}_{\gamma }\times {\gamma }{\prime}[j]dj\) is continuous (Rudin 1976, theorem 6.10 and 6.20). Q.E.D.

Because \(\pi \left(i\right)\) is continuous, provided that \(\pi \left(i\right)>0\) for some \(i,\) it implies that \(\eta < \lambda\). Thus, \(\pi \left(i\right)\ge 0\) for all . Notice that for any \(i\in [\eta , \lambda ]\), if firm \(S[i]\)’s sorting price is greater than or equal to the participation price, then there is no distortion, and the matching is positive assortative. Formally,

$$\forall i\in \left[\eta , \lambda \right], {\omega }^{SC}\left(S\left[i\right],i\right)\ge {\omega }^{PC}\left(i\right)={w}_{0}+\pi \left(i\right),$$

where.

$${\omega }^{SC}\left(S\left[i\right],i\right)=\underset{j>i}{{\text{max}}}Y\left(S\left[i\right],\gamma [i]\right)-Y\left(S\left[i\right],\gamma [j]\right)+{\omega }_{1}(j).$$

Here, the reason why the max operator is taken over j is because the sorting constraint must check for all possible matches \(j>i\). Recall that, in the static assignment, \({\omega }^{SC}\left(S\left[i\right],i\right)=\underset{j\to {i}^{+}}{{\text{lim}}}Y\left(S\left[i\right],\gamma [i]\right)-Y\left(S\left[i\right],\gamma [j]\right)+{\omega }_{1}\left(j\right)\) is determined by the marginal sorting constraint, and the market value is the sorting price for all managers but the last matched manager.

However, when \(\pi \left(i\right)>0\) is added to the participation price for some managers, then, \({\omega }^{SC}\left(S\left[i\right],i\right)\) may not be determined by \(j\) close to \(i\). Because \(\pi \left(i\right)\) is continuous, for \(j\to {i}^{+}\), \(\pi \left(j\right)\) is close to \(\pi \left(i\right)\). Thus, it can still satisfy the marginal sorting constraint. The extra added value \(\pi \left(i\right)\), however, may exceed the productive improvement, \(Y\left(S\left[i\right],\gamma [i]\right)-Y\left(S\left[i\right],\gamma [k]\right)\), for some distant \(k\). Rearrange \({\omega }^{SC}\left(S\left[i\right],i\right)\). Then, the sorting price dominates the participation price if

$$S\left[i\right]\ge \underset{j>i}{{\text{max}}}\frac{\pi \left(i,j\right)}{\left({m}_{g}-{m}_{b}\right)\left(\gamma \left[i\right]-\gamma \left[j\right]\right)}\equiv {S}^{*}\left[i\right], \forall i\in \left[\eta , \lambda \right], j\in \left(i,M\right],$$
(14)

where \(\pi \left(i,j\right)={\omega }^{PC}\left(i\right)-{\omega }_{1}(j)= \pi \left(i\right)+{\int }_{j}^{1}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }{\prime}\left[l\right]dl\). Here, the market price \({\omega }_{1}(j)\) is based on the equilibrium matching. The interpretation for \({S}^{*}[i]\) is the minimum firm size threshold that equalizes the sorting price to the participation price for manager \(\gamma [i]\) whose \(\pi \left(i\right)>0\). Thus, for any \(i\in \left[\eta , \lambda \right]\), if \(S\left[i\right]\ge {S}^{*}[i]\), the sorting price always dominates the participation price, and there is no distortion in matching, which is characterized as follows:

\({\mu }_{1}\left(i\right)=i, \forall i\in \left[\mathrm{0,1}\right], {\text{and}} {\mu }_{1}\left(i\right)=u,\forall i\in (1,M]\) if \(S\left[i\right]\ge {S}^{*}[i]\) for any \(i\in \left[\eta , \lambda \right]\),

where \({S}^{*}[i]\) is defined in (14).

Step 2) A distortion occurs only if, for some \(i\in [\eta , \lambda ]\), \(S\left[i\right]<{S}^{*}[i]\). Because \(\pi (i)\) is continuous, and \(Y\left(S\left[i\right],\gamma [j]\right)\) is continuous and is increasing with firm size, when \(S\left[i\right]<{S}^{*}[i]\), one can find \(k>i\) such that the sorting constraint is reversed.

$$Y\left(S\left[i\right],\gamma [i]\right)-Y\left(S\left[i\right],\gamma \left[k\right]\right)+{\omega }_{1}\left(k\right)<{w}_{0}+\pi \left(i\right).$$
(15)

The following claim shows that a firm’s willingness to pay is decreasing with rank \(j\).

Claim 2

For \(j< k\), \(\frac{\partial }{\partial j}\left(Y\left(S\left[j\right],\gamma [j]\right)-Y\left(S\left[j\right],\gamma [k]\right)\right)<0\).

Proof of Claim 2

Recall that as \(j\) increases, both firm size \(S[j]\) and manager reputation \(\gamma [j]\) decrease. Using the multivariable chain rule,

$$\begin{aligned} & & \frac{d}{dj}\left( {Y\left( {S\left[ j \right], \gamma \left[ j \right]} \right) - Y\left( {S\left[ j \right],\gamma \left[ k \right]} \right)} \right) \\ & = \frac{{\partial Y\left( {S\left[ j \right], \gamma \left[ j \right]} \right)}}{\partial S\left[ j \right]}\frac{dS\left[ j \right]}{{dj}} + \frac{{\partial Y\left( {S\left[ j \right], \gamma \left[ j \right]} \right)}}{\partial \gamma \left[ j \right]}\frac{d\gamma \left[ j \right]}{{dj}} - \frac{{\partial Y\left( {S\left[ j \right],\gamma \left[ k \right]} \right)}}{\partial S\left[ j \right]}\frac{dS\left[ j \right]}{{dj}} \\ & = \left( {\frac{{\partial Y\left( {S\left[ j \right], \gamma \left[ j \right]} \right)}}{\partial S\left[ j \right]} - \frac{{\partial Y\left( {S\left[ j \right], \gamma \left[ k \right]} \right)}}{\partial S\left[ j \right]}} \right)\frac{dS\left[ j \right]}{{dj}} + \frac{{\partial Y\left( {S\left[ j \right], \gamma \left[ j \right]} \right)}}{\partial \gamma \left[ j \right]}\frac{d\gamma \left[ j \right]}{{dj}} < 0. \\ \end{aligned}$$

The last inequality is due to \(\frac{\partial Y\left(S\left[j\right], \gamma [j]\right)}{\partial S\left[j\right]}>\frac{\partial Y\left(S\left[j\right], \gamma [k]\right)}{\partial S\left[j\right]}\) for \(j<k\), and \(\frac{\partial Y\left(S\left[j\right], \gamma [j]\right)}{\partial \gamma \left[j\right]}>0\), but \(\frac{dS\left[j\right]}{dj}<0\) and \(\frac{d\gamma \left[j\right]}{dj}<0\). Q.E.D.

Claim 2 implies that firm \(S[j]\)’s productive impact from a manager’s reputation is decreasing with \(j\). Because the size is in reverse order, the firm’s willingness to cover the manager’s value of sitting out is decreasing with \(j\) (i.e., as its size decreases).

Claim 3

If firm \(S\left[j\right]\) deviates to manager \(\gamma \left[k\right] {\text{for}} k>j\) in equilibrium, then for all firms \(S\left[l\right],l\in \left(j,k\right)\) deviate to manager \(\gamma [l+\left(k-j\right)]\) from manager \(\gamma [l]\).

Proof of Claim 3

Suppose not. Then, by switching manager \(\gamma [k]\) with manager \(\gamma [l]\), firm \(S\left[j\right]\) is strictly better off, the aggregate match output increases without making firm \(S\left[l\right]\) worse off by transferring \(\left(Y\left(S\left[l\right],\gamma \left[l\right]\right)-{\omega }_{1}\left(l\right)\right)-\left(Y\left(S\left[l\right],\gamma \left[k\right]\right)-{\omega }_{1}\left(k\right)\right)>0\) from the improved match output \(\left(Y\left(S\left[j\right],\gamma \left[l\right]\right)-\omega \left(l\right)\right)-\left(Y\left(S\left[j\right],\gamma \left[k\right]\right)-{\omega }_{1}\left(k\right)\right)>0\) (and similarly for managers \(\gamma [l]\) and \(\gamma [k]\)), thus contradiction. Therefore, if \(S\left[j\right]\) deviates to manager \(\gamma \left[k\right], k>j\) in equilibrium, then all firms \(S\left[l\right],l\in \left(j,k\right)\) deviate to manager \(\gamma [l+\left(k-j\right)]\) from manager \(\gamma [l]\). Q.E.D.

Claim 3 is based on complementarity. Thus, if firm \(S\left[j\right]\) is matched with manager \(\gamma [k]\), then it is efficient to assign firm \(S\left[l\right]\) to the managers \(\gamma [l+\left(k-j\right)]\) assortatively until every firm hires one manager.

Now I find a period 1 matching provided that there is \(i\in [\eta ,\lambda ]\) such that \(S\left[i\right]<{S}^{*}[i]\). Due to complementarity, the assignment starts from the top. Because \(\pi \left(0\right)=0\) as \(\gamma \left[0\right]=1\), and \(\pi (i)\) is continuous, the sorting price dominates the participation price for low \(i\). Thus, \({\mu }_{1}^{*}\left(j\right)=j\) for \(0\le j\le \eta\). Let \({i}^{*}\equiv \underset{i}{\mathrm{inf }}\{i\in \left[\eta , \lambda \right]\left|S\left[i\right]<{S}^{*}\left[i\right]\right\}\) and

$${k}^{*}\equiv \underset{k}{{\text{inf}}} \left\{k|Y\left(S\left[{i}^{*}\right],\gamma [{i}^{*}]\right)-Y\left(S\left[{i}^{*}\right],\gamma [k]\right)+{\omega }_{1}^{*}\left(k\right)<{w}_{0}+\pi \left({i}^{*}\right)\right\}.$$

As in Step 1, \({\omega }_{1}^{*}\left(k\right)={w}_{0}-{\int }_{k}^{1+A}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }{\prime}\left[l\right]dl\), where \(A\) denotes the measure of managers who sit out in equilibrium. Because the measure \({k}^{*}-{i}^{*}\) managers sit out (Claim 3), \(A={k}^{*}-{i}^{*}\). Thus, \({k}^{*}\) is implicitly determined by:

$${k}^{*}=\underset{k}{{\text{inf}}} \left\{k|Y\left(S\left[{i}^{*}\right],\gamma [{i}^{*}]\right)-Y\left(S\left[{i}^{*}\right],\gamma [k]\right)<\pi \left({i}^{*}\right)+{\int }_{k}^{1+(k-{i}^{*})}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }^{\mathrm{^{\prime}}}\left[l\right]dl\right\}.$$

Given (15), \({k}^{*}\) always exists. By the definition of \({i}^{*}\), for all \(j\in (\eta ,{i}^{*})\), the sorting price dominates the participation price; thus, \({\mu }_{1}^{*}\left(j\right)=j\). Because firm \(S[{i}^{*}]\) is strictly better off by matching with manager \(\gamma [{k}^{*}]\), \({\mu }_{1}^{*}\left({k}^{*}\right)={i}^{*}\). Due to Claim 3, for \(j\in ({i}^{*},1]\), firm \(S[j]\) matches with manager \(\gamma \left[j+\left({k}^{*}-{i}^{*}\right)\right]\). Due to the assumption that \(\pi \left(i\right)\) is single peaked in the neighborhood of \(\left[\eta , \lambda \right]\), there is no other deviation for firm \(S\left[j\right], j>{i}^{*}\). Therefore, \({\mu }_{1}^{*}\left(j+\left({k}^{*}-{i}^{*}\right)\right)=j\) for \(j\in \left[{i}^{*},1\right]\), which is equivalent to \({\mu }_{1}^{*}\left(i\right)=i-({k}^{*}-{i}^{*})\) for \(i\in \left[{k}^{*}, 1+\left({k}^{*}-{i}^{*}\right)\right]\).

The market price is determined similarly as in Lemma 1. The difference comes from the discontinuity in matching due to the value of sitting out. First, consider \(i<\eta\). As in Lemma 1, the market value is determined by the binding marginal sorting constraint and the sorting price dominates the participation price for \(i<\eta\). Thus, for manager \(\gamma [i]\), the market value starts from manager \(\gamma [\eta ]\)’s pay, and the reputation premium is accumulated up to \(i<\eta\).

$${\omega }_{1}^{*}\left(i\right)={\omega }_{1}^{*}\left(\eta \right)-{\int }_{i}^{\eta }{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }^{\mathrm{^{\prime}}}\left[l\right]dl\mathrm{ for }i\in \left[0,\eta \right].$$

For \(i\in [\eta ,{i}^{*}]\), because the matching is \({\mu }_{1}^{*}\left(i\right)=i\), the market price is determined by sorting price, which must be greater than or equal to the participation price. Recall that firm \(S\left[{i}^{*}\right]\) compares manager \(\gamma [{i}^{*}]\) with manager \(\gamma [{k}^{*}]\) and that a subset of managers \(\gamma [j]\) for \(j\in [{i}^{*}, {k}^{*}]\) sits out. Thus, for \(i\in [\eta ,{i}^{*}]\), starting from the baseline manager pay \({\omega }_{1}\left({i}^{*}\right)\), the reputation premium is accumulated from \({i}^{*}\) up to \(i\).

$${\omega }_{1}^{*}\left(i\right)={\omega }_{1}^{*}\left({i}^{*}\right)-{\int }_{i}^{{i}^{*}}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }^{\mathrm{^{\prime}}}\left[l\right]dl\ge {w}_{0}+\pi \left(i\right)\mathrm{ for }i\in \left[\eta ,{i}^{*}\right].$$

Because a subset of managers \(\gamma [i]\) for \(i\in [{i}^{*}, {k}^{*}]\) sits out, \({\omega }_{1}^{*}\left(i\right)={w}_{0}+\pi \left(i\right)\), and all of them are indifferent between participation and sitting out. For \(i\in \left[{k}^{*},1+\left({k}^{*}-{i}^{*}\right)\right]\), starting from the last matched manager \(\gamma \left[1+\left({k}^{*}-{i}^{*}\right)\right]\) whose market value is \({\omega }_{1}^{*}\left(1+\left({k}^{*}-{i}^{*}\right)\right)={w}_{0}+\pi (1+\left({k}^{*}-{i}^{*}\right))\), the reputation premium is accumulated from \(1+\left({k}^{*}-{i}^{*}\right)\) up to \(i\)

$${\omega }_{1}^{*}\left(i\right)={\omega }_{1}^{*}\left(1+\left({k}^{*}-{i}^{*}\right)\right)-{\int }_{i}^{1+\left({k}^{*}-{i}^{*}\right)}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }{\prime}\left[l\right]dl {\text{for}} i\in \left[{k}^{*},1+\left({k}^{*}-{i}^{*}\right)\right].$$

Because \({w}_{0}\) is sufficiently high, \({\omega }_{1}\left(1+\left({k}^{*}-{i}^{*}\right)\right)\ge 0\). Lastly, for the market values to be well-defined at rank \(\eta , {i}^{*}\) and \({k}^{*}\),

$${\omega }_{1}^{*}\left(\eta \right)={\omega }_{1}^{*}\left({i}^{*}\right)-{\int }_{\eta }^{{i}^{*}}{Y}_{\gamma }\left(S\left[l\right],\gamma [l]\right)\times {\gamma }^{\mathrm{^{\prime}}}\left[l\right]dl,$$

\({\omega }_{1}^{*}\left({i}^{*}\right)={w}_{0}+\pi ({i}^{*})\), and \({w}_{0}+\pi \left({k}^{*}\right)={\omega }_{1}^{*}\left(1+({k}^{*}-{i}^{*})\right)-{\int }_{{k}^{*}}^{1+({k}^{*}-{i}^{*})}{Y}_{\gamma }\times {\gamma }{\prime}\left[l\right]dl\).

Step 3) To show that this is indeed an equilibrium, the equilibrium above must satisfy the (SC) and (PC) constraints for all firms and (both matched and unmatched) managers, and there is no individual firm or manager or pair of firm and manager that can block the above assignment. By construction, for all \(i\) such that \({\mu }_{1}^{*}\left(i\right)\ne u\), \({\omega }_{1}^{*}(i)\) satisfies manager \(\gamma [i]\)’s participation constraint, and firm \(S[{\mu }_{1}^{*}\left(i\right)]\)’s sorting constraint. If manager \(\gamma [i]\) asks \({\omega }_{1}^{*}\left(i\right)+\zeta ,\zeta >0\), this cannot be an equilibrium, as the firm \(S[{\mu }_{1}^{*}\left(i\right)]\) will find another manager \(\gamma [i]\) at price \({\omega }_{1}^{*}(i)\). If firm \(S[{\mu }_{1}^{*}\left(i\right)]\) offers \({\omega }_{1}^{*}\left(i\right)-\zeta ,\zeta >0,\) this cannot be an equilibrium, as manager \(\gamma [i]\) will not accept the contract, and will find another firm \(S[{\mu }_{1}^{*}\left(i\right)]\) that is willing to pay \({\omega }_{1}^{*}(i)\). Therefore, there is no profitable deviation by any firm or any matched manager. Moreover, for manager \(\gamma \left[i\right], i\in [{i}^{*},{k}^{*}]\), \({\omega }_{1}^{*}(i)\) is the same as the participation price, \({\omega }_{1}^{*}\left(i\right)={\omega }^{PC}(i)\); thus, they are indifferent between participation and sitting out. But the participation price is greater than the sorting price that a firm is willing to pay. Thus, manager \(\gamma \left[i\right], i\in [{i}^{*},{k}^{*}]\) cannot be better off without making firms worse off.

To check that there is no block that Pareto improves the matching found above, let \(u\left(i\right)=Y\left(S\left[{\mu }_{1}^{*}\left(i\right)\right],\gamma [i]\right)-{\omega }_{1}^{*}(i)\) denote firm \(S\left[{\mu }_{1}^{*}\left(i\right)\right]\)’s equilibrium payoff. Because

$${\omega }_{1}^{*}\left(i\right)+u\left(j\right)=Y\left(S\left[j\right],\gamma [i]\right) {\text{for}} j={\mu }_{1}^{*}(i) {\text{and}}$$
$${\omega }_{1}^{*}\left(i\right)+u\left(j\right)>Y\left(S[j],\gamma [i]\right) {\text{for}} j\ne {\mu }_{1}^{*}\left(i\right),$$

there is no block either. Therefore, the matching function and the market value function characterized above constitute an equilibrium.

A.7.: Proof of Proposition 2

Proof

Recall that \(\pi \left(i\right)>0\) can be written as follows:

$$\begin{gathered} F_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - \left( {V\left( {i_{x} } \right) - V\left( {i_{\phi } } \right)} \right)\left| x \right\rangle m} \right] \hfill \\ < \overline{F}_{\gamma \left[ i \right]} \left( m \right)E\left[ {S\left[ {i_{\phi } } \right]\gamma \left[ {i_{\phi } } \right] - S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - \left( {V\left( {i_{\phi } } \right) - V\left( {i_{x} } \right)} \right)|x < m} \right], \hfill \\ \end{gathered}$$

where the expectation operator is with respect to \({f}_{\gamma \left[i\right]}\left(x\right)\).

To express the above condition with respect to the density quantile function, plug \(V\left(i\right)\) and rearrange the terms,

$${F}_{\gamma \left[i\right]}\left(m\right)E\left[S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]-\left({\int }_{{i}_{x}}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl-{\int }_{{i}_{\phi }}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl\right)|x>m\right]$$
$$<{\overline{F} }_{\gamma \left[i\right]}\left(m\right)E\left[S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]-S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-\left({\int }_{{i}_{\phi }}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl-{\int }_{{i}_{x}}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl\right)|x<m\right]$$
$$\iff S\left[{i}_{\phi }\right]\gamma \left[{i}_{\phi }\right]-{\int }_{{i}_{\phi }}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl>E\left[S\left[{i}_{x}\right]\gamma \left[{i}_{x}\right]-{\int }_{{i}_{x}}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl\right].$$
(16)

Let \(D\left(i\right)\equiv {\int }_{i}^{1}\frac{\gamma \left[l\right]}{\gamma \left[i\right]}\frac{g\left(S\left[i\right]\right)}{g\left(S\left[l\right]\right)}dl\). Here, \(D\left(i\right)\) represents the firm \(S[i]\)’s share of the total match surplus, normalized by \(\frac{\gamma \left[i\right]}{g\left(S\left[i\right]\right)}\). The slope effect can be written as: \({\int }_{{i}_{x}}^{1}\frac{\gamma \left[l\right]}{g\left(S\left[l\right]\right)}dl=D\left({i}_{x}\right)\frac{\gamma \left[{i}_{x}\right]}{g\left(S\left[{i}_{x}\right]\right)}\). Use \(\gamma \left[{i}_{x}\right]=\gamma \left[i\right]\frac{{f}_{g}\left(x\right)}{{f}_{\gamma \left[i\right]}\left(x\right)}\) and observe that

$$\begin{aligned} E\left[ {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - \mathop \int \limits_{{i_{x} }}^{1} \frac{\gamma \left[ l \right]}{{g\left( {S\left[ l \right]} \right)}}dl} \right] & = \mathop \int \limits_{{\underline {x} }}^{{\overline{x}}} \left( {S\left[ {i_{x} } \right]\gamma \left[ {i_{x} } \right] - D\left( {i_{x} } \right)\frac{{\gamma \left[ {i_{x} } \right]}}{{g\left( {S\left[ {i_{x} } \right]} \right)}}} \right)f_{\gamma \left[ i \right]} \left( x \right)dx \\ & = \gamma \left[ i \right]\mathop \int \limits_{{\underline {x} }}^{{\overline{x}}} \left( {S\left[ {i_{x} } \right]\frac{{f_{g} \left( x \right)}}{{f_{\gamma \left[ i \right]} \left( x \right)}} - \frac{{D\left( {i_{x} } \right)}}{{g\left( {S\left[ {i_{x} } \right]} \right)}}\frac{{f_{g} \left( x \right)}}{{f_{\gamma \left[ i \right]} \left( x \right)}}} \right)f_{\gamma \left[ i \right]} \left( x \right)dx = \gamma \left[ i \right]E_{g} \left[ {S\left[ {i_{x} } \right] - \frac{{D\left( {i_{x} } \right)}}{{g\left( {S\left[ {i_{x} } \right]} \right)}}} \right], \\ \end{aligned}$$

where \({E}_{g}\) denotes an expectation operator under a good type manager.

Thus, inequality (16) is written as:

$$\Leftrightarrow \gamma \left[ {i_{\phi } } \right]\left( {S\left[ {i_{\phi } } \right] - \frac{{D\left( {i_{\phi } } \right)}}{{g\left( {S\left[ {i_{\phi } } \right]} \right)}}} \right) > \gamma \left[ i \right]E_{g} \left[ {S\left[ {i_{x} } \right] - \frac{{D\left( {i_{x} } \right)}}{{g\left( {S\left[ {i_{x} } \right]} \right)}}} \right].$$

Because \(\gamma \left[i\right]=\gamma \left[{i}_{\phi }\right]=\gamma\), the condition above reduces to expression (8):

$$S\left[ {i_{\phi } } \right] - \frac{{D\left( {i_{\phi } } \right)}}{{g\left( {S\left[ {i_{\phi } } \right]} \right)}} > E_{g} \left[ {S\left[ {i_{x} } \right] - \frac{{D\left( {i_{x} } \right)}}{{g\left( {S\left[ {i_{x} } \right]} \right)}}} \right].$$
(17)

The left-hand side of (17) represents the difference between the quantile function of firm size and the reciprocal of the density quantile function of firm size (multiplied by the firm \(S[i]\)’s share \(D\left(i\right)\)) when the manager sits out. The right-hand side is the expected difference between the quantile function and the reciprocal of the density quantile function when the manager participates and is a good type. The above condition implies that the manager’s share (in the case of participation) increases slowly even if he is a good type: as firm size increases, \(D\left({i}_{x}\right)/g\left(S\left[{i}_{x}\right]\right)\) increases faster than its size. I apply condition (8) for different distributions of firm size—uniform and Pareto. Provided that \(D\left(i\right)=1\) for all \(i\), the following cases show which distributions can potentially satisfy condition (17).

Case 1) uniform distribution over (0,1).

$$g\left(S\right)=1,S\left[i\right]=1-i, {S}^{\mathrm{^{\prime}}}\left[i\right]=-1=-\frac{1}{g\left(S\left[i\right]\right)}.$$

Plug these into (17):

$${E}_{g}\left[1-{i}_{x}-1\right]={E}_{g}\left[-{i}_{x}\right]<-{i}_{\phi }.$$

Therefore, under the uniform distribution assumption, (17) is equivalent to \({E}_{g}\left[{i}_{x}\right]>{i}_{\phi }\).

Case 2) Pareto distribution.

$$g\left(S\right)=\frac{1}{\beta }{S}^{-\frac{1+\beta }{\beta }},S\left[i\right]={i}^{-\beta }, {S}^{\mathrm{^{\prime}}}\left[i\right]=-\beta {i}^{-\beta -1}=-\frac{1}{g\left(S\left[i\right]\right)}.$$

Plug these into (17):

$${E}_{g}\left[{i}_{x}^{-\beta }-\beta {i}_{x}^{-\beta -1}\right]={E}_{g}\left[\frac{1}{{i}_{x}^{\beta }}\left(1-\frac{\beta }{{i}_{x}}\right)\right]<\frac{1}{{i}_{\phi }^{\beta }}\left(1-\frac{\beta }{{i}_{\phi }}\right).$$

When \(\beta =1\) (a Zipf’s law), condition (17) is written as.

$${E}_{g}\left[\frac{1}{{i}_{x}^{\beta }}\left(\frac{\beta }{{i}_{x}}-1\right)\right]>\frac{1}{{i}_{\phi }^{\beta }}\left(\frac{\beta }{{i}_{\phi }}-1\right),$$

For any \(i<1\) because \(\frac{\beta }{{i}_{x}}>1\) and \(\frac{\beta }{{i}_{\phi }}>1\). Notice that \(\frac{1}{{y}^{\beta }}\left(\frac{\beta }{y}-1\right)\) is strictly convex decreasing in \(y\in (\mathrm{0,1})\) for any \(\beta >0\) because.

$$\frac{\partial }{\partial y}\left(\frac{1}{{y}^{\beta }}\left(\frac{\beta }{y}-1\right)\right)=-\beta {y}^{-2-\beta }\left(1+\beta -y\right)<0,$$
$$\frac{{\partial }^{2}}{\partial {y}^{2}}\left(\frac{1}{{y}^{\beta }}\left(\frac{\beta }{y}-1\right)\right)=\beta \left(1+\beta \right)\left(2+\beta -y\right){y}^{-3-\beta }>0.$$

Thus, by Jensen’s inequality, the inequality is always satisfied for \(\beta =1.\)

A.8.: Proof of Proposition 3

Proof

Conditional on the manager \(\gamma \left[i\right]\)’s participation, firm \(S\left[j\right]\) offers the contract satisfying the (IR) constraint:

$$\frac{1}{2}E\left[{w}_{x}|i\right]+\frac{1}{2}E\left[{v}_{x}|i\right]-c\ge {\omega }_{t}\left(i\right)-c,$$

where the contract ensures that the manager’s expected payoff of exerting effort for firm \(S\left[j\right]\) is greater than or equal to his payoff of working for other firms who will pay \({\omega }_{t}\left(i\right)\) in expectation.

Moreover, the contract satisfies the (IC) constraint:

$$\frac{1}{2}E\left[{w}_{x}|i\right]+\frac{1}{2}E\left[{v}_{x}|i\right]-c\ge E\left[{v}_{x}|i\right].$$

Thus, the minimum incentive compatible payment must give \({v}_{x}=0\) for all \(x\), and the binding (IR) wage satisfies \(\frac{1}{2}E\left[{w}_{x}|i\right]={\omega }_{t}\left(i\right)\). Since \({\omega }_{t}\left(i\right)\ge {w}_{0}\) for any \(i\) and \(t\), and \(c<{w}_{0}\), the payoffs of all participating managers who will exert effort are ensured to be positive.

Since all firms design the contract to elicit effort, knowing that he will exert effort upon participation, manager \(\gamma \left[i\right]\) participates if:

$$\begin{array}{*{20}c} {\frac{1}{2}E\left[ {w_{x} {|}i} \right] + \frac{1}{2}E\left[ {v_{x} {|}i} \right] - c + {\Pi }_{i}^{P} \ge w_{0} + {\Pi }_{i}^{NP} .} \\ \end{array}$$
(18)

The market value, \({\omega }_{t}\left(i\right)\) in period \(t=1\), is determined by (18) and the (SC) constraint:

$$Y\left(S[j],i\right)-{\omega }_{t}\left(i\right)\ge Y\left(S\left[j\right],k\right)-{\omega }_{t}\left(k\right) \forall i, j, k,$$

as in the proof of Proposition 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E. Repeated matching, career concerns, and firm size. J Econ 142, 45–80 (2024). https://doi.org/10.1007/s00712-024-00854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-024-00854-1

Keywords

JEL Classification

Navigation