Log in

Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Our experiments explored the effects of far-red (FR) light on cucumber (Cucumis sativus L. ‘Zhongnong No. 26’) seedling growth. Our results indicated that FR light significantly promoted the growth of cucumber seedlings. Specifically, it promoted the accumulation of shoot biomass and the elongation of internodes and leaves (except the first leaf at the bottom). Further analysis showed that FR light had no effect on the accumulation contents of abscisic acid (ABA) and auxin (IAA) in seedling leaves. Still, it significantly caused the increase of the gibberellin (GA3, GA4, and GA7) contents and the decrease of GA1 content, which suggested that the leaf expansion progress under FR light may be primarily related to GA. Therefore, the cucumber seedling leaf expansion response to GA was evaluated under different light sources. The exogenous spraying of different GA4/7 contents significantly promoted the leaf expansion of cucumber seedlings under white light, while the GA biosynthesis inhibitor paclobutrazol (PAC) significantly promoted the expression of GA hydrolytic genes (GA2ox2 and GA2ox4) and decreased the content of endogenous active GA, which inhibited the leaf expansion induced by FR light. As expected, the combination of exogenous GA4/7 and PAC restored the growth promotion effect of FR light on cucumber seedling leaves. It increased the contents of endogenous active GA (GA1, GA3, GA4, and GA7), and the expression trend in GA synthetic/hydrolytic-related genes was the opposite of that of PAC was applied alone. All of the above results indicated that FR light regulates leaf expansion progress in cucumber seedlings through GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Alabadí D, Blázquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409–417

    Article  PubMed  Google Scholar 

  • Alabadí D, Gil J, Blázquez MA, García-Martínez JL (2004) Gibberellins repress photomorphogenesis in darkness. Plant Physiol 134:1050–1057

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian TT, Ma Y, Guo J, Wu Y, Shi DM, Guo XF (2020) Herbaceous peony (Paeonia lactiflora Pall.) PlDELLA gene negatively regulates dormancy release and plant growth. Plant Sci 297:110539

    Article  CAS  PubMed  Google Scholar 

  • Bou-Torrent J, Galstyan A, Gallemí M, Cifuentes-Esquivel N, Molina-Contreras MJ, Salla-Martret M, Jikumaru Y, Yamaguchi S, Kamiya Y, Martínez-García JF (2014) Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. J Exp Bot 65:2937–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Gene Dev 21:1863–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ, Voesenek LACJ, Pierik R (2013) Perception of low red: far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J 75:90–103

    Article  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong JH, **ang J (2001) Studies on a quick intact measurement to cucumber colony’ s leaf area. Chin Vegetables 7–9. https://kns.cnki.net/kcms2/article/abstract?v=xBNwvqFr00KQ6A5LH4gYE8D9beXMgImP_7uECgJKyZwhaEnwz4nGvvQyZQ1qMxW028WUpBbPDP8opQZrEffPpt0nQPEj6FxHoCk0fzQK9xlWrMTAtv2iUHCMswxPzYrWPLXf1lnzoM=&uniplatform=NZKPT

  • Hernández R, Kubota C (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66–74

    Article  Google Scholar 

  • Jiang HK, Shui ZW, Xu L, Yang YH, Li Y, Yuan XQ, Shang J, Asghar MA, Wu XL, Yu L, Liu CY, Yang WY, Sun X, Du JB (2020) Gibberellins modulate shade-induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids. Plant Physiol Bioch 150:209–221

    Article  CAS  Google Scholar 

  • Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133

    Article  CAS  Google Scholar 

  • Kalaitzoglou P, van Ieperen W, Harbinson J, van der Meer M, Martinakos S, Weerheim K, Nicole CCS, Marcelis LFM (2019) Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Front Plant Sci 10:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurepin LV, Neil Emery RJ, Pharis RP, Reid DM (2007) Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. J Exp Bot 58:2145–2157

    Article  CAS  PubMed  Google Scholar 

  • Kurepin LV, Walton LJ, Reid DM, Chinnappa CC (2010) Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany 88:668–674

    Article  CAS  Google Scholar 

  • Kurepin LV, Yip WK, Fan R, Yeung EC, Reid DM (2010) The roles and interactions of ethylene with gibberellins in the far-red enriched light-mediated growth of Solanum lycopersicum seedlings. Plant Growth Regul 61:215–222

    Article  CAS  Google Scholar 

  • Lee MJ, Park SY, Oh MM (2015) Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Hortic Environ Biote 56:186–194

    Article  CAS  Google Scholar 

  • Lee MJ, Son KH, Oh MM (2016) Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote 57:139–147

    Article  Google Scholar 

  • Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, Erickson E, Quail PH (2012) Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 24:1398–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  CAS  PubMed  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86–91

    Article  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Maddonni GA, Otegui ME, Andrieu B, Chelle M, Casal JJ (2002) Maize leaves turn away from neighbors. Plant Physiol 130:1181–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu XH, Chen QW, Wu XY, Chen FJ, Yuan LX, Mi GH (2018) Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ Exp Bot 150:198–208

    Article  CAS  Google Scholar 

  • Nelissen H, Rymen B, Jikumaru Y, Demuynck K, Van Lijsebettens M, Kamiya Y, Inzé D, Beemster GTS (2012) A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr Biol 22:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Ozga JA, Jody Y, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Llorca M, Casadesús A, Müller M, Munné-Bosch S (2019) Inter-individual and sun orientation driven variability reveals antagonistic salicylate and jasmonate accumulation in white-leaved rockrose. Environ Exp Bot 162:115–124

    Article  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Saini K, Markakis MN, Zdanio M, Balcerowicz DM, Beeckman T, De Veylder L, Prinsen E, Beemster GTS, Vissenberg K (2017) Alteration in auxin homeostasis and signaling by overexpression of PINOID kinase causes leaf growth defects in Arabidopsis thaliana. Front Plant Sci 8:1009

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarlikioti V, de Visser PHB, Buck-Sorlin GH, Marcelis LFM (2011) How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot 108:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya T, Endo R, Kitaya Y, Hayashi S (2016) Growth analysis and photosynthesis measurements of cucumber seedlings grown under light with different red to far-red ratios. HortSci 51:843–846

    Article  CAS  Google Scholar 

  • Smith H, Whitelam GC, McCormac AC (1991) Do the members of the phytochrome family have different roles? Physiological evidence from wild-type, mutant and transgenic plants. Phytochrome Properties and Biological Action, Springer: Berlin/Heidelberg, Germany, pp 217–236. https://springer.longhoe.net/chapter/10.1007/978-3-642-75130-1_15

  • Sören S, Lempe J, Prusinkiewicz P, Tsiantis M, Smith RS (2020) Phyllotaxis: is the golden angle optimal for light capture? New Phytol 225:499–510

    Article  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T, Hsing YC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19:2140–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HF, Kong FJ, Zhou CE (2021) From genes to networks: the genetic control of leaf development. J Integr Plant Biol 63:1181–1196

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu WT, Ran LF, Chen Z, Wang CN, Dou Y, Qin YY, Suo QW, Li YH, Zeng JY, Liang AM, Dai YL, Wu YP, Ouyang XF, **ao YH (2021) DELLA-NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem. Front Plant Sci 12:655127

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Burgess P, Xu JC, Meyer W, Huang B (2016) Osmotic stress- and salt stress-inhibition and gibberellin-mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Environ Exp Bot 131:101–109

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Feng LY, Liu QL, Wu XL, Fan YF, Raza MA, Cheng YJ, Chen JX, Wang XC, Yong TW, Liu WG, Liu J, Du JB, Shu K, Yang WY (2018) Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ Exp Bot 150:79–87

    Article  CAS  Google Scholar 

  • Zahedi SM, Sarikhani H (2017) The effect of end of day far-red light on regulating flowering of short-day strawberry (Fragaria × ananassa Duch. cv. Paros) in a long-day situation. Russ J Plant Physiol 64:83–90

    Article  CAS  Google Scholar 

  • Zhang YT, Zhang YQ, Yang QC, Li T (2019) Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J Integr Agr 18:62–69

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fujian Modern Agricultural Vegetable Industry System Construction Project (2019–897) and the Rural Revitalization Vegetable Industry Service Project of Fujian Agriculture and Forestry University (11899170118).

Author information

Authors and Affiliations

Authors

Contributions

SH Li performed the main experiments, data analysis, and wrote the paper. SX Ran, S Yuan, KZ Chang, and MX Han performed some of the experiments. FL Zhong designed the experiment and revised the paper.

Corresponding author

Correspondence to Fenglin Zhong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ran, S., Yuan, S. et al. Gibberellin-mediated far-red light-induced leaf expansion in cucumber seedlings. Protoplasma 261, 571–579 (2024). https://doi.org/10.1007/s00709-023-01923-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01923-w

Keywords

Navigation