Log in

Phase field modeling of topological magnetic structures in ferromagnetic materials: domain wall, vortex, and skyrmion

  • Review and Perspective in Mechanics (by invitation only)
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Topological magnetic structures in ferromagnetic materials have attracted considerable attention due to their interesting physics and potential applications in devices. Ferromagnetic materials often exhibit magnetoelastic coupling effect. Therefore, topological magnetic structures can be modulated by strain engineering. In order to understand the mechanism of strain modulation and dynamic properties of topological magnetic structures, different phase field models have been proposed to predict the evolutions of topological magnetic orders. In this review, we first introduce the phase field models based on micromagnetic theory, elastodynamic equation, and Maxwell equation. Then, we review the recent progress in phase field simulations on the mechanical manipulation of the topological magnetic structures, including magnetic domain wall, vortex, and skyrmion. Based on the phase field modeling of dynamic characteristics of topological magnetic structures, the present review also discusses the modes of topological magnetic structures in frequency domain, the modulation of magnetization under different external fields, and the coupling between topological magnetic structures and spin waves. The review concludes by briefly addressing the future research directions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2008, Science. f, g Proposal of domain wall logic and domain wall memory in hybrid piezoelectric/ferromagnetic structures. f Design of a multi-input NOR logic function by using voltage control of elementary DW gates. g Design of a racetrack memory using voltage control of a DW gate. Panels f and g adapted with permission from Ref. [25]. Copyright 2013, Nature Communications

Fig. 3
Fig. 4

Copyright 2021, Applied Physics Letters

Fig. 5

Copyright 2020, Nanoscale

Fig. 6
Fig. 7
Fig. 8

Copyright 2018, npj Computational Materials

Fig. 9

Copyright 2022, ACS Nano

Fig. 10

Copyright 2021, Nano Letters

Fig. 11

Copyright 2021, Nature Nanotechnology

Fig. 12

Similar content being viewed by others

References

  1. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979). https://doi.org/10.1103/RevModPhys.51.591

    Article  MathSciNet  Google Scholar 

  2. Kittel, C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946). https://doi.org/10.1103/PhysRev.70.965

    Article  Google Scholar 

  3. Jie, Wang.: Mechanical control of magnetic order: from phase transition to skyrmions. Annu. Rev. Mater. Res. 49(1) 361–388 (2019). https://doi.org/10.1146/annurev-matsci-070218-010200

  4. Abid, A.Y., Sun, Y., Hou, X., Tan, C., Zhong, X., Zhu, R., Chen, H., Qu, K., Li, Y., Wu, M., Zhang, J., Wang, J., Liu, K., Bai, X., Yu, D., Ouyang, X., Wang, J., Li, J., Gao, P.: Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021). https://doi.org/10.1038/s41467-021-22356-0

    Article  Google Scholar 

  5. Kim, J., You, M., Kim, K.E., Chu, K., Yang, C.H.: Artificial creation and separation of a single vortex–antivortex pair in a ferroelectric flatland. npj Quantum Mater. (2019). https://doi.org/10.1038/s41535-019-0167-y

    Article  Google Scholar 

  6. Kim, K.E., Jeong, S., Chu, K., Lee, J.H., Kim, G.Y., Xue, F., Koo, T.Y., Chen, L.Q., Choi, S.Y., Ramesh, R., Yang, C.H.: Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018). https://doi.org/10.1038/s41467-017-02813-5

    Article  Google Scholar 

  7. Zhang, S., Levy, P.M., Fert, A.: Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett. 88, 2366011–2366014 (2002). https://doi.org/10.1103/PhysRevLett.88.236601

    Article  Google Scholar 

  8. Hanneken, C., Otte, F., Kubetzka, A., Dupé, B., Romming, N., Von Bergmann, K., Wiesendanger, R., Heinze, S.: Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015). https://doi.org/10.1038/nnano.2015.218

    Article  Google Scholar 

  9. Ryu, K.S., Thomas, L., Yang, S.H., Parkin, S.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013). https://doi.org/10.1038/nnano.2013.102

    Article  Google Scholar 

  10. Zhang, C., Wang, J., **, C., Zeng, Z., **a, H., Wang, J., Liu, Q.: Spin current pumped by confined breathing skyrmion. New J. Phys. 22, 053029 (2020). https://doi.org/10.1088/1367-2630/ab83d6

    Article  Google Scholar 

  11. Fukami, S., Suzuki, T., Nakatani, Y., Ishiwata, N., Yamanouchi, M., Ikeda, S., Kasai, N., Ohno, H.: Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl. Phys. Lett. 98, 082504 (2011). https://doi.org/10.1063/1.3558917

    Article  Google Scholar 

  12. Manchon, A., Zhang, S.: Theory of spin torque due to spin-orbit coupling. Phys. Rev. B 79, 094422 (2009). https://doi.org/10.1103/PhysRevB.79.094422

    Article  Google Scholar 

  13. Fan, Y., Upadhyaya, P., Kou, X., Lang, M., Takei, S., Wang, Z., Tang, J., He, L., Chang, L.T., Montazeri, M., Yu, G., Jiang, W., Nie, T., Schwartz, R.N., Tserkovnyak, Y., Wang, K.L.: Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014). https://doi.org/10.1038/nmat3973

    Article  Google Scholar 

  14. Tang, J., Wu, Y., Wang, W., Kong, L., Lv, B., Wei, W., Zang, J., Tian, M., Du, H.: Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021). https://doi.org/10.1038/s41565-021-00954-9

    Article  Google Scholar 

  15. Dyakonov, M.I.: Spin hall effect. Int. J. Mod. Phys. B 23, 2556–2565 (2009). https://doi.org/10.1142/s0217979209061986

    Article  Google Scholar 

  16. Giordano, A., Verba, R., Zivieri, R., Laudani, A., Puliafito, V., Gubbiotti, G., Tomasello, R., Siracusano, G., Azzerboni, B., Carpentieri, M., Slavin, A., Finocchio, G.: Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii–Moriya interaction as generator of skyrmions and nonreciprocal spin-waves. Sci. Rep. 6, 36020 (2016). https://doi.org/10.1038/srep36020

    Article  Google Scholar 

  17. Wang, J., Li, G.P., Shimada, T., Fang, H., Kitamura, T.: Control of the polarity of magnetization vortex by torsion. Appl. Phys. Lett. 103, 242413 (2013). https://doi.org/10.1063/1.4847375

    Article  Google Scholar 

  18. Wang, J., Zhang, J.: A real-space phase field model for the domain evolution of ferromagnetic materials. Int. J. Solids Struct. 50, 3597–3609 (2013). https://doi.org/10.1016/j.ijsolstr.2013.07.001

    Article  Google Scholar 

  19. Hu, J.M., Yang, T., Chen, L.Q.: Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures. npj Comput. Mater. (2018). https://doi.org/10.1038/s41524-018-0119-2

    Article  Google Scholar 

  20. Adhikari, A., Adenwalla, S.: Surface acoustic waves increase magnetic domain wall velocity. AIP Adv. 11, 015234 (2021). https://doi.org/10.1063/9.0000159

    Article  Google Scholar 

  21. Chiba, D., Yamada, G., Koyama, T., Ueda, K., Tanigawa, H., Fukami, S., Suzuki, T., Ohshima, N., Ishiwata, N., Nakatani, Y., Ono, T.: Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl. Phys. Express 3, 073004 (2010). https://doi.org/10.1143/APEX.3.073004

    Article  Google Scholar 

  22. Hayashi, M., Thomas, L., Moriya, R., Rettner, C., Parkin, S.S.P.: Current-controlled magnetic domain-wall nanowire shift register. Science 320, 209–211 (2008). https://doi.org/10.1126/science.1154587

    Article  Google Scholar 

  23. Zhou, H., Shi, S., Nian, D., Cui, S., Luo, J., Qiu, Y., Yang, H., Zhu, M., Yu, G.: Voltage control of magnetic domain wall injection into strain-mediated multiferroic heterostructures. Nanoscale 12, 14479–14486 (2020). https://doi.org/10.1039/d0nr02595j

    Article  Google Scholar 

  24. Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008). https://doi.org/10.1126/science.1145799

    Article  Google Scholar 

  25. Lei, N., Devolder, T., Agnus, G., Aubert, P., Daniel, L., Kim, J.-V., Zhao, W., Trypiniotis, T., Cowburn, R.P., Chappert, C., Ravelosona, D., Lecoeur, P.: Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4, 1378 (2013). https://doi.org/10.1038/ncomms2386

    Article  Google Scholar 

  26. Bohlens, S., Krüger, B., Drews, A., Bolte, M., Meier, G., Pfannkuche, D.: Current controlled random-access memory based on magnetic vortex handedness. Appl. Phys. Lett. 93, 91–94 (2008). https://doi.org/10.1063/1.2998584

    Article  Google Scholar 

  27. Yu, Y.S., Jung, H., Lee, K.S., Fischer, P., Kim, S.K.: Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture. Appl. Phys. Lett. 98, 052507 (2011). https://doi.org/10.1063/1.3551524

    Article  Google Scholar 

  28. Skyrme, T.H.R.: A non-linear field theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 260, 127–138 (1961). https://doi.org/10.1098/rspa.1961.0018

    Article  MathSciNet  MATH  Google Scholar 

  29. Rößler, U.K., Bogdanov, A.N., Pfleiderer, C.: Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006). https://doi.org/10.1038/nature05056

    Article  Google Scholar 

  30. Fert, A., Reyren, N., Cros, V.: Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31

    Article  Google Scholar 

  31. Mühlbauer, S.: Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2011). https://doi.org/10.1126/science.333.6048.1381-b

    Article  Google Scholar 

  32. Yu, X.Z., Onose, Y., Kanazawa, N., Park, J.H., Han, J.H., Matsui, Y., Nagaosa, N., Tokura, Y.: Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010). https://doi.org/10.1038/nature09124

    Article  Google Scholar 

  33. Heinze, S., Von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011). https://doi.org/10.1038/nphys2045

    Article  Google Scholar 

  34. Woo, S., Litzius, K., Krüger, B., Im, M.Y., Caretta, L., Richter, K., Mann, M., Krone, A., Reeve, R.M., Weigand, M., Agrawal, P., Lemesh, I., Mawass, M.A., Fischer, P., Kläui, M., Beach, G.S.D.: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016). https://doi.org/10.1038/nmat4593

    Article  Google Scholar 

  35. Krause, S., Wiesendanger, R.: Spintronics: skyrmionics gets hot. Nat. Mater. 15, 493–494 (2016). https://doi.org/10.1038/nmat4615

    Article  Google Scholar 

  36. Shi, Y., Yu, H., Shimada, T., Wang, J., Kitamura, T.: Phase field simulations on domain switching-induced toughening in ferromagnetic materials. Eur. J. Mech. A/Solids 65, 205–211 (2017). https://doi.org/10.1016/j.euromechsol.2017.04.007

    Article  Google Scholar 

  37. Shi, Y., Yu, H., Wang, J.: An I-integral method for the crack-tip intensity factor in ferromagnetic materials with domain switching. Acta Mech. 230, 1427–1439 (2019). https://doi.org/10.1007/s00707-017-2016-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Liu, C., Yu, H., Wang, J.: Phase field simulations on domain switching-induced toughening or weakening in multiferroic composites. Int. J. Solids Struct. 178–179, 48–58 (2019). https://doi.org/10.1016/j.ijsolstr.2019.06.019

    Article  Google Scholar 

  39. Nii, Y., Kikkawa, A., Taguchi, Y., Tokura, Y., Iwasa, Y.: Elastic stiffness of a skyrmion crystal. Phys. Rev. Lett. 113, 267203 (2014). https://doi.org/10.1103/PhysRevLett.113.267203

    Article  Google Scholar 

  40. Sasaki, R., Nii, Y., Iguchi, Y., Onose, Y.: Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO3. Phys. Rev. B 95, 20407 (2017). https://doi.org/10.1103/PhysRevB.95.020407

    Article  Google Scholar 

  41. Verba, R., Lisenkov, I., Krivorotov, I., Tiberkevich, V., Slavin, A.: Nonreciprocal surface acoustic waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii–Moriya interactions. Phys. Rev. Appl. 9, 64014 (2018). https://doi.org/10.1103/PhysRevApplied.9.064014

    Article  Google Scholar 

  42. Küß, M., Heigl, M., Flacke, L., Hörner, A., Weiler, M., Albrecht, M., Wixforth, A.: Nonreciprocal Dzyaloshinskii–Moriya magnetoacoustic waves. Phys. Rev. Lett. 125, 217203 (2020). https://doi.org/10.1103/PhysRevLett.125.217203

    Article  Google Scholar 

  43. Macià, F., Hernàndez, J.M., Herfort, J., Santos, P.V.: Large nonreciprocal propagation of surface acoustic waves in epitaxial ferromagnetic/semiconductor hybrid structures. Phys. Rev. Appl. 13, 044018 (2020). https://doi.org/10.1103/PhysRevApplied.13.044018

    Article  Google Scholar 

  44. Szulc, K., Mendisch, S., Mruczkiewicz, M., Casoli, F., Becherer, M., Gubbiotti, G.: Nonreciprocal spin-wave dynamics in Pt/Co/W/Co/Pt multilayers. Phys. Rev. B 103, 134404 (2021). https://doi.org/10.1103/physrevb.103.134404

    Article  Google Scholar 

  45. Garcia-Sanchez, F., Borys, P., Vansteenkiste, A., Kim, J.V., Stamps, R.L.: Nonreciprocal spin-wave channeling along textures driven by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 89, 224408 (2014). https://doi.org/10.1103/PhysRevB.89.224408

    Article  Google Scholar 

  46. Tokura, Y., Nagaosa, N.: Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018). https://doi.org/10.1038/s41467-018-05759-4

    Article  Google Scholar 

  47. Seki, S., Garst, M., Waizner, J., Takagi, R., Khanh, N.D., Okamura, Y., Kondou, K., Kagawa, F., Otani, Y., Tokura, Y.: Propagation dynamics of spin excitations along skyrmion strings. Nat. Commun. 11, 256 (2020). https://doi.org/10.1038/s41467-019-14095-0

    Article  Google Scholar 

  48. **ng, X., Zhou, Y.: Fiber optics for spin waves. NPG Asia Mater. 8, e246–e246 (2016). https://doi.org/10.1038/am.2016.25

    Article  Google Scholar 

  49. Khivintsev, Y., Marsh, J., Zagorodnii, V., Harward, I., Lovejoy, J., Krivosik, P., Camley, R.E., Celinski, Z.: Nonlinear amplification and mixing of spin waves in a microstrip geometry with metallic ferromagnets. Appl. Phys. Lett. 98, 042505 (2011). https://doi.org/10.1063/1.3541787

    Article  Google Scholar 

  50. Zhou, Z.W., Wang, X.G., Nie, Y.Z., **a, Q.L., Guo, G.H.: Spin wave frequency comb generated through interaction between propagating spin wave and oscillating domain wall. J. Magn. Magn. Mater. 534, 168046 (2021). https://doi.org/10.1016/j.jmmm.2021.168046

    Article  Google Scholar 

  51. Wang, Z., Yuan, H.Y., Cao, Y., Li, Z.X., Duine, R.A., Yan, P.: Magnonic frequency comb through nonlinear magnon-skyrmion scattering. Phys. Rev. Lett. 127, 037202 (2021). https://doi.org/10.1103/PhysRevLett.127.037202

    Article  Google Scholar 

  52. Gao, Z.C., Yang, Y., Su, Y., Hu, J., Park, C.: The interactions between spin wave and stacked domain walls. J. Phys. Condens. Matter. 33, 065806 (2020). https://doi.org/10.1088/1361-648X/abc806

    Article  Google Scholar 

  53. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Sci. 32, 113–140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  Google Scholar 

  54. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Annu. Rev. Mater. Sci. 32, 163–194 (2002). https://doi.org/10.1146/annurev.matsci.32.101901.155803

    Article  Google Scholar 

  55. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998). https://doi.org/10.1146/annurev.fluid.30.1.139

    Article  MathSciNet  MATH  Google Scholar 

  56. Karma, A., Rappel, W.J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017–R3020 (1996). https://doi.org/10.1103/PhysRevE.53.R3017

    Article  Google Scholar 

  57. Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M., Trivedi, R.: Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater. 57, 941–971 (2009). https://doi.org/10.1016/j.actamat.2008.10.020

    Article  Google Scholar 

  58. Karma, A., Tourret, D.: Atomistic to continuum modeling of solidification microstructures. Curr. Opin. Solid State Mater. Sci. 20, 25–36 (2016). https://doi.org/10.1016/j.cossms.2015.09.001

    Article  Google Scholar 

  59. Krill, C.E., Chen, L.Q.: Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 50, 3057–3073 (2002). https://doi.org/10.1016/s1359-6454(02)00084-8

    Article  Google Scholar 

  60. Kim, S.G., Kim, D.I., Kim, W.T., Park, Y.B.: Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 74, 061605 (2006). https://doi.org/10.1103/PhysRevE.74.061605

    Article  Google Scholar 

  61. Bratkovsky, A.M., Levanyuk, A.P.: Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006). https://doi.org/10.1063/1.2408650

    Article  Google Scholar 

  62. Moelans, N., Blanpain, B., Wollants, P.: Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys. Rev. B 78, 024113 (2008). https://doi.org/10.1103/PhysRevB.78.024113

    Article  Google Scholar 

  63. Rowenhorst, D.J., Lewis, A.C., Spanos, G.: Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater. 58, 5511–5519 (2010). https://doi.org/10.1016/j.actamat.2010.06.030

    Article  Google Scholar 

  64. **, S., Su, Y.: A phase field study of the grain-size effect on the thermomechanical behavior of polycrystalline NiTi thin films. Acta Mech. 232, 4545–4566 (2021). https://doi.org/10.1007/s00707-021-03074-6

    Article  MathSciNet  MATH  Google Scholar 

  65. Singer, H.M., Singer, I., Jacot, A.: Phase-field simulations of α → γ precipitations and transition to massive transformation in the Ti–Al alloy. Acta Mater. 57, 116–124 (2009). https://doi.org/10.1016/j.actamat.2008.08.055

    Article  Google Scholar 

  66. Wang, J., Shi, S.Q., Chen, L.Q., Li, Y., Zhang, T.Y.: Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Mater. 52, 749–764 (2004). https://doi.org/10.1016/j.actamat.2003.10.011

    Article  Google Scholar 

  67. Javanbakht, M., Ghaedi, M.S.: Interaction of martensitic transformations and vacancy diffusion at the nanoscale under thermal loading: a phase field model and simulations. Acta Mech. 232, 4567–4582 (2021). https://doi.org/10.1007/s00707-021-03067-5

    Article  MathSciNet  MATH  Google Scholar 

  68. Li, X., Su, Y.: A phase-field study of the martensitic detwinning in NiTi shape memory alloys under tension or compression. Acta Mech. 231, 1539–1557 (2020). https://doi.org/10.1007/s00707-020-02613-x

    Article  MathSciNet  MATH  Google Scholar 

  69. Li, Y.S., Li, S.X., Zhang, T.Y.: Effect of dislocations on spinodal decomposition in Fe–Cr alloys. J. Nucl. Mater. 395, 120–130 (2009). https://doi.org/10.1016/j.jnucmat.2009.10.042

    Article  Google Scholar 

  70. Wang, Y., Li, J.: Phase field modeling of defects and deformation. Acta Mater. 58, 1212–1235 (2010). https://doi.org/10.1016/j.actamat.2009.10.041

    Article  Google Scholar 

  71. Wang, Y.U., **, Y.M., Cuitiño, A.M., Khachaturyan, A.G.: Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations. Acta Mater. 49, 1847–1857 (2001). https://doi.org/10.1016/S1359-6454(01)00075-1

    Article  Google Scholar 

  72. Karma, A., Kessler, D.A., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87, 045501 (2001). https://doi.org/10.1103/PhysRevLett.87.045501

    Article  Google Scholar 

  73. Schillinger, D., Borden, M.J., Stolarski, H.K.: Isogeometric collocation for phase-field fracture models. Comput. Methods Appl. Mech. Eng. 284, 583–610 (2015). https://doi.org/10.1016/j.cma.2014.09.032

    Article  MathSciNet  MATH  Google Scholar 

  74. Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V.: A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014). https://doi.org/10.1016/j.cma.2014.01.016

    Article  MathSciNet  MATH  Google Scholar 

  75. Abdollahi, A., Arias, I.: Phase-field simulation of anisotropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process. Model. Simul. Mater. Sci. Eng. 19, 74010–74013 (2011). https://doi.org/10.1088/0965-0393/19/7/074010

    Article  Google Scholar 

  76. Wei, L., Yapeng, S., Daining, F.: Magnetoelastic coupling on soft ferromagnetic solids with an interface crack. Acta Mech. 154, 1–9 (2002). https://doi.org/10.1007/BF01170695

    Article  MATH  Google Scholar 

  77. Santra, S., Mandal, S., Chakraborty, S.: Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. Int. J. Numer. Methods Heat Fluid Flow 31, 3089–3131 (2020). https://doi.org/10.1108/HFF-01-2020-0001

    Article  Google Scholar 

  78. Soligo, G., Roccon, A., Soldati, A.: Mass-conservation-improved phase field methods for turbulent multiphase flow simulation. Acta Mech. 230, 683–696 (2019). https://doi.org/10.1007/s00707-018-2304-2

    Article  MathSciNet  MATH  Google Scholar 

  79. Han, B.C., Van Der Ven, A., Morgan, D., Ceder, G.: Electrochemical modeling of intercalation processes with phase field models. Electrochim. Acta. 49, 4691–4699 (2004). https://doi.org/10.1016/j.electacta.2004.05.024

    Article  Google Scholar 

  80. Tang, M., Carter, W.C., Chiang, Y.M.: Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40, 501–529 (2010). https://doi.org/10.1146/annurev-matsci-070909-104435

    Article  Google Scholar 

  81. Miehe, C., Dal, H., Schänzel, L.M., Raina, A.: A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int. J. Numer. Methods Eng. 106, 683–711 (2016). https://doi.org/10.1002/nme.5133

    Article  MathSciNet  MATH  Google Scholar 

  82. Di Leo, C.V., Rejovitzky, E., Anand, L.: A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J. Mech. Phys. Solids 70, 1–29 (2014). https://doi.org/10.1016/j.jmps.2014.05.001

    Article  MathSciNet  MATH  Google Scholar 

  83. Song, Y.C., Ni, Y., Zhang, J.Q.: Phase field model of polarization evolution in a finite ferroelectric body with free surfaces. Acta Mech. 224, 1309–1313 (2013). https://doi.org/10.1007/s00707-013-0858-6

    Article  MATH  Google Scholar 

  84. Liu, N., Su, Y.: The grain-size-dependent behaviors of nano-grained ferroelectric polycrystals: a phase-field study. Acta Mech. 225, 1335–1345 (2014). https://doi.org/10.1007/s00707-013-1068-y

    Article  Google Scholar 

  85. Chen, H.T., Soh, A.K., Ni, Y.: Phase field modeling of flexoelectric effects in ferroelectric epitaxial thin films. Acta Mech. 225, 1323–1333 (2014). https://doi.org/10.1007/s00707-013-1045-5

    Article  MathSciNet  Google Scholar 

  86. Oden, J.T., Hawkins, A., Prudhomme, S.: General diffuse-interface theories and an approach to predictive tumor growth modeling. Math. Model. Methods Appl. Sci. 20, 477–517 (2010). https://doi.org/10.1142/S0218202510004313

    Article  MathSciNet  MATH  Google Scholar 

  87. Travasso, R.D.M., Poiré, E.C., Castro, M., Rodrguez-Manzaneque, J.C., Hernández-Machado, A.: Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE 6, e19989 (2011). https://doi.org/10.1371/journal.pone.0019989

    Article  Google Scholar 

  88. Vilanova, G., Colominas, I., Gomez, H.: Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int. J. Numer. Method Biomed. Eng. 29, 1015–1037 (2013). https://doi.org/10.1002/cnm.2552

    Article  MathSciNet  Google Scholar 

  89. Wu, X., van Zwieten, G.J., van der Zee, K.G.: Stabilized second-order convex splitting schemes for Cahn–Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Method Biomed. Eng. 30, 180–203 (2014). https://doi.org/10.1002/cnm.2597

    Article  MathSciNet  Google Scholar 

  90. Wang, J.C., **a, A.L., Xu, Y., Lu, X.J.: Comprehensive treatments for hepatocellular carcinoma with portal vein tumor thrombosis. J. Cell. Physiol. 234, 1062–1070 (2019). https://doi.org/10.1002/jcp.27324

    Article  Google Scholar 

  91. Moelans, N., Blanpain, B., Wollants, P.: An introduction to phase-field modeling of microstructure evolution. Calphad Comput. Coupling Phase Diagr. Thermochem. 32, 268–294 (2008). https://doi.org/10.1016/j.calphad.2007.11.003

    Article  Google Scholar 

  92. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  93. Haar, D. te.: On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. In: Men of Physics: L.D. Landau. Low Temperature and Solid State Physics pp. 178–194 (1965). https://doi.org/10.1016/B978-0-08-010523-9.50018-3

  94. Rosenberg, R.: Magnetostatic principles in ferromagnetism. In: Solid-State Electronics, pp. 938–939. North Holland Publishing Co., Amsterdam (1964)

    Google Scholar 

  95. Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53, 2845–2855 (2005). https://doi.org/10.1016/j.actamat.2005.03.002

    Article  Google Scholar 

  96. Zhang, J.X., Chen, L.Q.: Phase-field model for ferromagnetic shape-memory alloys. Philos. Mag. Lett. 85, 533–541 (2005). https://doi.org/10.1080/09500830500385527

    Article  Google Scholar 

  97. Porter, M.J.D. and D.G.: OOMMF User’s Guide, Version 1.0. Gaithersburg (1999)

  98. Vansteenkiste, A., Leliaert, J., Dvornik, M., Helsen, M., Garcia-Sanchez, F., Van Waeyenberge, B.: The design and verification of MuMax3. AIP Adv. 4, 107133 (2014). https://doi.org/10.1063/1.4899186

    Article  Google Scholar 

  99. Gordon, A., Vagner, I.D., Wyder, P.: Kinetics of diamagnetic phase transitions. Phys. Rev. B 41, 658–663 (1990). https://doi.org/10.1103/PhysRevB.41.658

    Article  Google Scholar 

  100. Ni, Y., He, L., Khachaturyan, A.G.: Equivalency principle for magnetoelectroelastic multiferroics with arbitrary microstructure: the phase field approach. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3428438

    Article  Google Scholar 

  101. Lu, X., Li, H., Wang, B.: Theoretical analysis of electric, magnetic and magnetoelectric properties of nano-structured multiferroic composites. J. Mech. Phys. Solids 59, 1966–1977 (2011). https://doi.org/10.1016/J.JMPS.2011.07.007

    Article  MathSciNet  MATH  Google Scholar 

  102. Wang, J., Zhang, J., Shimada, T., Kitamura, T.: Effect of strain on the evolution of magnetic multi-vortices in ferromagnetic nano-platelets. J. Phys. Condens. Matter. 25, 226002 (2013). https://doi.org/10.1088/0953-8984/25/22/226002

    Article  Google Scholar 

  103. **, Y.M.: Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation. Acta Mater. 57, 2488–2495 (2009). https://doi.org/10.1016/J.ACTAMAT.2009.02.003

    Article  Google Scholar 

  104. Wang, J., Zhang, T.Y.: Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater. 55, 2465–2477 (2007). https://doi.org/10.1016/j.actamat.2006.11.041

    Article  Google Scholar 

  105. Wang, J., Kamlah, M.: Domain structures of ferroelectric nanotubes controlled by surface charge compensation. Appl. Phys. Lett. 93, 24–27 (2008). https://doi.org/10.1063/1.2966366

    Article  Google Scholar 

  106. Landis, C.M.: A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J. Mech. Phys. Solids 56, 3059–3076 (2008). https://doi.org/10.1016/j.jmps.2008.05.004

    Article  MathSciNet  MATH  Google Scholar 

  107. Wu, H.H., Ke, Y., Zhu, J., Wu, Z., Wang, X.L.: Effects of magnetic frequency and the coupled magnetic-mechanical loading on a ferromagnetic shape memory alloy. J. Phys. D Appl. Phys. 54, 155301 (2021). https://doi.org/10.1088/1361-6463/abd5e3

    Article  Google Scholar 

  108. Wang, Y., Sun, J., Shimada, T., Hirakata, H., Kitamura, T., Wang, J.: Ferroelectric control of magnetic skyrmions in multiferroic heterostructures. Phys. Rev. B 102, 014440 (2020). https://doi.org/10.1103/PhysRevB.102.014440

    Article  Google Scholar 

  109. Kim, J.V., Yoo, M.W.: Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 110, 132404 (2017). https://doi.org/10.1063/1.4979316

    Article  Google Scholar 

  110. Rodrigues, D.R., Nothhelfer, J., Mohseni, M., Knapman, R., Pirro, P., Everschor-Sitte, K.: Nonlinear dynamics of topological ferromagnetic textures for frequency multiplication. Phys. Rev. Appl. 16, 1 (2021). https://doi.org/10.1103/PhysRevApplied.16.014020

    Article  Google Scholar 

  111. Casals, B., Statuto, N., Foerster, M., Hernández-Mínguez, A., Cichelero, R., Manshausen, P., Mandziak, A., Aballe, L., Hernàndez, J.M., Macià, F.: Generation and imaging of magnetoacoustic waves over millimeter distances. Phys. Rev. Lett. 124, 137202 (2020). https://doi.org/10.1103/PhysRevLett.124.137202

    Article  Google Scholar 

  112. Küß, M., Heigl, M., Flacke, L., Hörner, A., Weiler, M., Wixforth, A., Albrecht, M.: Nonreciprocal magnetoacoustic waves in dipolar-coupled ferromagnetic bilayers. Phys. Rev. Appl. 15, 034060 (2021). https://doi.org/10.1103/PhysRevApplied.15.034060

    Article  Google Scholar 

  113. Sun, J., Zhang, Y., Wang, J.: Vortex core reversal by elastic waves in ferromagnetic materials. Int. J. Solids Struct. 233, 111213 (2021). https://doi.org/10.1016/j.ijsolstr.2021.111213

    Article  Google Scholar 

  114. Wu, H.H., Pramanick, A., Ke, Y.B., Wang, X.L.: Real-space phase field investigation of evolving magnetic domains and twin structures in a ferromagnetic shape memory alloy. J. Appl. Phys. 120, 183904 (2016). https://doi.org/10.1063/1.4967531

    Article  Google Scholar 

  115. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

    Article  Google Scholar 

  116. Slonczewski, J.C.: Currents and torques in metallic magnetic multilayers. J. Magn. Magn. Mater. 247, 324–338 (2002). https://doi.org/10.1016/S0304-8853(02)00291-3

    Article  Google Scholar 

  117. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996). https://doi.org/10.1103/PhysRevB.54.9353

    Article  Google Scholar 

  118. Liu, L., Pai, C.-F., Li, Y., Tseng, H.W., Ralph, D.C., Buhrman, R.A.: Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). https://doi.org/10.1126/SCIENCE.1218197

    Article  Google Scholar 

  119. Yakushiji, K., Sugihara, A., Fukushima, A., Kubota, H., Yuasa, S.: Very strong antiferromagnetic interlayer exchange coupling with iridium spacer layer for perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 110, 092406 (2017). https://doi.org/10.1063/1.4977565

    Article  Google Scholar 

  120. Peng, S., Zhao, W., Qiao, J., Su, L., Zhou, J., Yang, H., Zhang, Q., Zhang, Y., Grezes, C., Amiri, P.K., Wang, K.L.: Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/cap** layer structures. Appl. Phys. Lett. 110, 072403 (2017). https://doi.org/10.1063/1.4976517

    Article  Google Scholar 

  121. Manchon, A., Železný, J., Miron, I.M., Jungwirth, T., Sinova, J., Thiaville, A., Garello, K., Gambardella, P.: Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 0034–6861 (2019). https://doi.org/10.1103/RevModPhys.91.035004

    Article  MathSciNet  Google Scholar 

  122. Zhang, S., Li, Z.: Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004). https://doi.org/10.1103/PhysRevLett.93.127204

    Article  Google Scholar 

  123. Reeve, R.M., Mix, C., König, M., Foerster, M., Jakob, G., Kläui, M.: Magnetic domain structure of La0.7Sr0.3MnO3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis. Appl. Phys. Lett. 102, 122407 (2013). https://doi.org/10.1063/1.4798538

    Article  Google Scholar 

  124. Li, Q., Tan, A., Scholl, A., Young, A.T., Yang, M., Hwang, C., N’Diaye, A.T., Arenholz, E., Li, J., Qiu, Z.Q.: Electrical switching of the magnetic vortex circulation in artificial multiferroic structure of Co/Cu/PMN-PT(011). Appl. Phys. Lett. 110, 262405 (2017). https://doi.org/10.1063/1.4990987

    Article  Google Scholar 

  125. Cui, B., Song, C., Gehring, G.A., Li, F., Wang, G., Chen, C., Peng, J., Mao, H., Zeng, F., Pan, F.: Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv. Funct. Mater. 25, 864–870 (2015). https://doi.org/10.1002/adfm.201403370

    Article  Google Scholar 

  126. Caputo, J.G., Gaididei, Y., Mertens, F.G., Sheka, D.D.: Vortex polarity switching by a spin-polarized current. Phys. Rev. Lett. 98, 056604 (2007). https://doi.org/10.1103/PhysRevLett.98.056604

    Article  Google Scholar 

  127. Demidov, V.E., Urazhdin, S., Demokritov, S.O.: Direct observation and map** of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984–988 (2010). https://doi.org/10.1038/nmat2882

    Article  Google Scholar 

  128. Zhu, M., Hu, H., Cui, S., Li, Y., Zhou, X., Qiu, Y., Guo, R., Wu, G., Yu, G., Zhou, H.: Strain-driven radial vortex core reversal in geometric confined multiferroic heterostructures. Appl. Phys. Lett. 118, 262412 (2021). https://doi.org/10.1063/5.0054010

    Article  Google Scholar 

  129. van de Ven, A.A.F.: Magnetoelastic buckling of magnetically saturated bodies. Acta Mech. 47, 229–246 (1983). https://doi.org/10.1007/BF01189211

    Article  MATH  Google Scholar 

  130. Sander, D.: The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999). https://doi.org/10.1088/0034-4885/62/5/204

    Article  Google Scholar 

  131. Peng, R.C., Hu, J.M., Momeni, K., Wang, J.J., Chen, L.Q., Nan, C.W.: Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage. Sci. Rep. 6, 27561 (2016). https://doi.org/10.1038/srep27561

    Article  Google Scholar 

  132. Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015). https://doi.org/10.1007/s00707-015-1336-0

    Article  MathSciNet  MATH  Google Scholar 

  133. Liu, Y.Y., Vasudevan, R.K., Pan, K., **e, S.H., Liang, W.I., Kumar, A., Jesse, S., Chen, Y.C., Chu, Y.H., Nagarajan, V., Kalinin, S.V., Li, J.Y.: Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. Nanoscale 4, 3175–3183 (2012). https://doi.org/10.1039/c2nr00039c

    Article  Google Scholar 

  134. Feng, C., Meng, F., Wang, Y., Jiang, J., Mehmood, N., Cao, Y., Lv, X., Yang, F., Wang, L., Zhao, Y., **e, S., Hou, Z., Mi, W., Peng, Y., Wang, K., Gao, X., Yu, G., Liu, J.: Field-free manipulation of skyrmion creation and annihilation by tunable strain engineering. Adv. Funct. Mater. 31, 2008715 (2021). https://doi.org/10.1002/adfm.202008715

    Article  Google Scholar 

  135. Chen, C., Barra, A., Mal, A., Carman, G., Sepulveda, A.: Voltage induced mechanical/spin wave propagation over long distances. Appl. Phys. Lett. 110, 072401 (2017). https://doi.org/10.1063/1.4975828

    Article  Google Scholar 

  136. Parkin, S., Jiang, X., Kaiser, C., Panchula, A., Roche, K., Samant, M.: Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–679 (2003). https://doi.org/10.1109/JPROC.2003.811807

    Article  Google Scholar 

  137. Helseth, L.E., Fischer, T.M., Johansen, T.H.: Domain wall tip for manipulation of magnetic particles. Phys. Rev. Lett. 91, 208302 (2003). https://doi.org/10.1103/PhysRevLett.91.208302

    Article  Google Scholar 

  138. Pertsev, N.A.: Strain-mediated electric-field control of multiferroic domain structures in ferromagnetic films. Appl. Phys. Lett. 102, 112407 (2013). https://doi.org/10.1063/1.4795938

    Article  Google Scholar 

  139. Lahtinen, T.H.E., Franke, K.J.A., Van Dijken, S.: Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012). https://doi.org/10.1038/srep00258

    Article  Google Scholar 

  140. Chung, T.K., Carman, G.P., Mohanchandra, K.P.: Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl. Phys. Lett. 92, 112509 (2008). https://doi.org/10.1063/1.2900886

    Article  Google Scholar 

  141. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., Nan, C.W.: Full 180° magnetization reversal with electric fields. Sci. Rep. 4, 7507 (2014). https://doi.org/10.1038/srep07507

    Article  Google Scholar 

  142. Peng, R.C., Hu, J.M., Chen, L.Q., Nan, C.W.: On the speed of piezostrain-mediated voltage-driven perpendicular magnetization reversal: a computational elastodynamics-micromagnetic phase-field study. NPG Asia Mater. 9, e404 (2017). https://doi.org/10.1038/am.2017.97

    Article  Google Scholar 

  143. Wang, Q., Li, X., Liang, C.Y., Barra, A., Domann, J., Lynch, C., Sepulveda, A., Carman, G.: Strain-mediated 180° switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy. Appl. Phys. Lett. 110, 102903 (2017). https://doi.org/10.1063/1.4978270

    Article  Google Scholar 

  144. Yi, M., Xu, B.X., Müller, R., Gross, D.: Strain-mediated magnetoelectric effect for the electric-field control of magnetic states in nanomagnets. Acta Mech. 230, 1247–1256 (2019). https://doi.org/10.1007/s00707-017-2029-7

    Article  Google Scholar 

  145. Zhu, M., Li, Y., Hu, H., Cui, S., Qiu, Y., Yu, G., Zhou, H.-M.: Theoretical routes for current-free magnetization switching induced by joint effects of strain and Dzyaloshinskii–Moriya interaction. Appl. Phys. Lett. 121, 032402 (2022). https://doi.org/10.1063/5.0097526

    Article  Google Scholar 

  146. Parkes, D.E., Cavill, S.A., Hindmarch, A.T., Wadley, P., McGee, F., Staddon, C.R., Edmonds, K.W., Campion, R.P., Gallagher, B.L., Rushforth, A.W.: Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films. Appl. Phys. Lett. 101, 072402 (2012). https://doi.org/10.1063/1.4745789

    Article  Google Scholar 

  147. Dean, J., Bryan, M.T., Cooper, J.D., Virbule, A., Cunningham, J.E., Hayward, T.J.: A sound idea: manipulating domain walls in magnetic nanowires using surface acoustic waves. Appl. Phys. Lett. 107, 142405 (2015). https://doi.org/10.1063/1.4932057

    Article  Google Scholar 

  148. Yu, G., He, X., Qiu, Y., Wu, G., Guo, R., Zhu, M., Zhou, H.: Dynamics of domain wall induced by voltage-controlled strain-field gradient. AIP Adv. 12, 035036 (2022). https://doi.org/10.1063/9.0000279

    Article  Google Scholar 

  149. Hu, J.M., Yang, T., Momeni, K., Cheng, X., Chen, L.Q.L., Lei, S., Zhang, S., Trolier-Mckinstry, S., Gopalan, V., Carman, G.P., Nan, C.W., Chen, L.Q.L.: Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 16, 2341–2348 (2016). https://doi.org/10.1021/acs.nanolett.5b05046

    Article  Google Scholar 

  150. Yu, G., Shi, S., Peng, R., Guo, R., Qiu, Y., Wu, G., Li, Y., Zhu, M., Zhou, H.: Strain-driven magnetic domain wall dynamics controlled by voltage in multiferroic heterostructures. J. Magn. Magn. Mater. 552, 169229 (2022). https://doi.org/10.1016/j.jmmm.2022.169229

    Article  Google Scholar 

  151. Ostler, T.A., Cuadrado, R., Chantrell, R.W., Rushforth, A.W., Cavill, S.A.: Strain induced vortex core switching in planar magnetostrictive nanostructures. Phys. Rev. Lett. 115, 067202 (2015). https://doi.org/10.1103/PhysRevLett.115.067202

    Article  Google Scholar 

  152. Zhang, Y., Wang, C., Huang, H., Lu, J., Liang, R., Liu, J., Peng, R., Zhang, Q., Zhang, Q., Wang, J., Gu, L., Han, X.F., Chen, L.Q., Ramesh, R., Nan, C.W., Zhang, J.: Deterministic reversal of single magnetic vortex circulation by an electric field. Sci. Bull. 65, 1260–1267 (2020). https://doi.org/10.1016/j.scib.2020.04.008

    Article  Google Scholar 

  153. Finizio, S., Wintz, S., Kirk, E., Suszka, A.K., Gliga, S., Wohlhüter, P., Zeissler, K., Raabe, J.: Control of the gyration dynamics of magnetic vortices by the magnetoelastic effect. Phys. Rev. B 96, 054438 (2017). https://doi.org/10.1103/PhysRevB.96.054438

    Article  Google Scholar 

  154. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958). https://doi.org/10.1016/0022-3697(58)90076-3

    Article  Google Scholar 

  155. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960). https://doi.org/10.1103/PhysRev.120.91

    Article  Google Scholar 

  156. Romming, N., Hanneken, C., Menzel, M., Bickel, J.E., Wolter, B., von Bergmann, K., Kubetzka, A., Wiesendanger, R.: Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013). https://doi.org/10.1126/science.1240573

    Article  Google Scholar 

  157. Ma, F., Zhou, Y., Braun, H.B., Lew, W.S.: Skyrmion-based dynamic magnonic crystal. Nano Lett. 15, 4029–4036 (2015). https://doi.org/10.1021/acs.nanolett.5b00996

    Article  Google Scholar 

  158. Gusev, N.S., Sadovnikov, A.V., Nikitov, S.A., Sapozhnikov, M.V., Udalov, O.G.: Manipulation of the Dzyaloshinskii–Moriya interaction in Co/Pt multilayers with strain. Phys. Rev. Lett. 124, 157202 (2020). https://doi.org/10.1103/PhysRevLett.124.157202

    Article  Google Scholar 

  159. Koshibae, W., Nagaosa, N.: Creation of skyrmions and antiskyrmions by local heating. Nat. Commun. 5, 6148 (2014). https://doi.org/10.1038/ncomms6148

    Article  Google Scholar 

  160. Wang, Y., Shimada, T., Wang, J., Kitamura, T., Hirakata, H.: The rectilinear motion of the individual asymmetrical skyrmion driven by temperature gradients. Acta Mater. 221, 117383 (2021). https://doi.org/10.1016/j.actamat.2021.117383

    Article  Google Scholar 

  161. Liu, Y., Lei, N., Zhao, W., Liu, W., Ruotolo, A., Braun, H.-B.B., Zhou, Y.: Chop** skyrmions from magnetic chiral domains with uniaxial stress in magnetic nanowire. Appl. Phys. Lett. 111, 022406 (2017). https://doi.org/10.1063/1.4993433

    Article  Google Scholar 

  162. Yokouchi, T., Sugimoto, S., Rana, B., Seki, S., Ogawa, N., Kasai, S., Otani, Y.: Creation of magnetic skyrmions by surface acoustic waves. Nat. Nanotechnol. 15, 361–366 (2020). https://doi.org/10.1038/s41565-020-0661-1

    Article  Google Scholar 

  163. Nepal, R., Güngördü, U., Kovalev, A.A.: Magnetic skyrmion bubble motion driven by surface acoustic waves. Appl. Phys. Lett. 112, 112404 (2018). https://doi.org/10.1063/1.5013620

    Article  Google Scholar 

  164. Yanes, R., Garcia-Sanchez, F., Luis, R.F., Martinez, E., Raposo, V., Torres, L., Lopez-Diaz, L.: Skyrmion motion induced by voltage-controlled in-plane strain gradients. Appl. Phys. Lett. 115, 132401 (2019). https://doi.org/10.1063/1.5119085

    Article  Google Scholar 

  165. Shi, Y., Wang, J.: Stabilizing skyrmions by nonuniform strain in ferromagnetic thin films without a magnetic field. Phys. Rev. B 97, 224428 (2018). https://doi.org/10.1103/PhysRevB.97.224428

    Article  Google Scholar 

  166. Zhang, Y., Liu, J., Dong, Y., Wu, S., Zhang, J., Wang, J., Lu, J., Rückriegel, A., Wang, H., Duine, R., Yu, H., Luo, Z., Shen, K., Zhang, J.: Strain-driven Dzyaloshinskii–Moriya interaction for room-temperature magnetic skyrmions. Phys. Rev. Lett. 127, 117204 (2021). https://doi.org/10.1103/physrevlett.127.117204

    Article  Google Scholar 

  167. Stavrou, V.D., Kourounis, D., Dimakopoulos, K., Panagiotopoulos, I., Gergidis, L.N.: Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study. Nanoscale 11, 20102–20114 (2019). https://doi.org/10.1039/c9nr04829d

    Article  Google Scholar 

  168. Kim, J.V., Garcia-Sanchez, F., Sampaio, J., Moreau-Luchaire, C., Cros, V., Fert, A.: Breathing modes of confined skyrmions in ultrathin magnetic dots. Phys. Rev. B 90, 064410 (2014). https://doi.org/10.1103/PhysRevB.90.064410

    Article  Google Scholar 

  169. Ikka, M., Takeuchi, A., Mochizuki, M.: Resonance modes and microwave-driven translational motion of a skyrmion crystal under an inclined magnetic field. Phys. Rev. B 98, 184428 (2018). https://doi.org/10.1103/PhysRevB.98.184428

    Article  Google Scholar 

  170. Kim, J., Yang, J., Cho, Y.J., Kim, B., Kim, S.K.: Coupled breathing modes in one-dimensional skyrmion lattices. J. Appl. Phys. 123, 053903 (2018). https://doi.org/10.1063/1.5010948

    Article  Google Scholar 

  171. Yi, M., Xu, B.X.: A constraint-free phase field model for ferromagnetic domain evolution. Proc. R. Soc. Math. Phys. Eng. Sci. 470, 20140517 (2014). https://doi.org/10.1098/rspa.2014.0517

    Article  Google Scholar 

  172. Meier, D., Valanoor, N., Zhang, Q., Lee, D.: Domains and domain walls in ferroic materials. J. Appl. Phys. 129, 230401 (2021). https://doi.org/10.1063/5.0057144

    Article  Google Scholar 

  173. Gao, Z.C., Su, Y., Weng, L., Hu, J., Park, C.: Quantifying arbitrary-spin-wave-driven domain wall motion, the creep nature of domain wall and the mechanism for domain wall advances. New J. Phys. 21, 063014 (2019). https://doi.org/10.1088/1367-2630/ab1c75

    Article  Google Scholar 

  174. Wang, Z., Li, Z.-X., Wang, R., Liu, B., Meng, H., Cao, Y., Yan, P.: Spin-wave focusing induced skyrmion generation. Appl. Phys. Lett. 117, 222406 (2020). https://doi.org/10.1063/5.0029401

    Article  Google Scholar 

  175. Yu, T., Wang, C., Sentef, M.A., Bauer, G.E.W.: Spin-wave Doppler shift by Magnon drag in magnetic insulators. Phys. Rev. Lett. 126, 137202 (2021). https://doi.org/10.1103/PhysRevLett.126.137202

    Article  Google Scholar 

  176. Moretti, S., Raposo, V., Martinez, E., Lopez-Diaz, L.: Domain wall motion by localized temperature gradients. Phys. Rev. B 95, 064419 (2017). https://doi.org/10.1103/PhysRevB.95.064419

    Article  Google Scholar 

  177. Zhou, X., Ren, H., Jiang, C., Wang, F., He, X.: Current-driven periodic domain walls injection in a ferromagnetic nanostrip with a modified perpendicular magnetic anisotropy region. J. Phys. D Appl. Phys. 55, 385002 (2022). https://doi.org/10.1088/1361-6463/ac7e85

    Article  Google Scholar 

  178. Fernandez-Roldan, J.A., Ivanov, Y.P., Chubykalo-Fesenko, O.: Micromagnetic Modelling of Magnetic Domain Walls and Domains in Cylindrical Nanowires. In: Magnetic Nano- and Microwires, pp. 403–426. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  179. Skoric, L., Donnelly, C., Abert, C., Hierro-Rodriguez, A., Suess, D., Fernández-Pacheco, A.: Micromagnetic modeling of magnetic domain walls in curved cylindrical nanotubes and nanowires. Appl. Phys. Lett. 118, 242403 (2021). https://doi.org/10.1063/5.0050872

    Article  Google Scholar 

  180. Skoric, L., Donnelly, C., Hierro-Rodriguez, A., Ruiz-Gómez, S., Foerster, M., Niño, M.A., Belkhou, R., Abert, C., Suess, D., Fernández-Pacheco, A.: Domain wall automotion in three-dimensional magnetic helical interconnectors. ACS Nano 16, 8860–8868 (2022). https://doi.org/10.1021/acsnano.1c10345

    Article  Google Scholar 

  181. Zhou, Y., Ezawa, M.: A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014). https://doi.org/10.1038/ncomms5652

    Article  Google Scholar 

  182. Perumal, H.P., Syamlal, S.K., Sinha, J.: Controlled domain-wall pair to skyrmion conversion in typical junction geometry useful for magnetic memory devices. ECS J. Solid State Sci. Technol. 10, 081002 (2021). https://doi.org/10.1149/2162-8777/ac1804

    Article  Google Scholar 

  183. **ng, X., Pong, P.W.T., Zhou, Y.: Skyrmion domain wall collision and domain wall-gated skyrmion logic. Phys. Rev. B 94, 054408 (2016). https://doi.org/10.1103/PhysRevB.94.054408

    Article  Google Scholar 

  184. Mayr, S., Flajsman, L., Finizio, S., Hrabec, A., Weigand, M., Förster, J., Stoll, H., Heyderman, L.J., Urbanek, M., Wintz, S., Raabe, J.: Spin-wave emission from vortex cores under static magnetic bias fields. Nano Lett. 21, 1584–1590 (2021). https://doi.org/10.1021/acs.nanolett.0c03740

    Article  Google Scholar 

  185. Ma, X.P., Cai, M.X., Li, P., Shim, J.H., Piao, H.G., Kim, D.H.: Periodic vortex core switching in curved magnetic nanodisk. J. Magn. Magn. Mater. 502, 22–25 (2020). https://doi.org/10.1016/j.jmmm.2020.166481

    Article  Google Scholar 

  186. Karakas, V., Gokce, A., Habiboglu, A.T., Arpaci, S., Ozbozduman, K., Cinar, I., Yanik, C., Tomasello, R., Tacchi, S., Siracusano, G., Carpentieri, M., Finocchio, G., Hauet, T., Ozatay, O.: Observation of magnetic radial vortex nucleation in a multilayer stack with tunable anisotropy. Sci. Rep. 8, 7180 (2018). https://doi.org/10.1038/s41598-018-25392-x

    Article  Google Scholar 

  187. Lebecki, K.M., Legut, D.: Fast vortex core switching at high temperatures. J. Magn. Magn. Mater. 411, 7–11 (2016). https://doi.org/10.1016/j.jmmm.2016.03.025

    Article  Google Scholar 

  188. Schwarze, T., Waizner, J., Garst, M., Bauer, A., Stasinopoulos, I., Berger, H., Pfleiderer, C., Grundler, D.: Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat. Mater. 14, 478–483 (2015). https://doi.org/10.1038/nmat4223

    Article  Google Scholar 

  189. Ehlers, D., Stasinopoulos, I., Tsurkan, V., Von Nidda, H.A.K., Fehér, T., Leonov, A., Kézsmárki, I., Grundler, D., Loidl, A.: Skyrmion dynamics under uniaxial anisotropy. Phys. Rev. B 94, 014406 (2016). https://doi.org/10.1103/PhysRevB.94.014406

    Article  Google Scholar 

  190. Kravchuk, V.P., Sheka, D.D., Rößler, U.K., Van Den Brink, J., Gaididei, Y.: Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass. Phys. Rev. B 97, 064403 (2018). https://doi.org/10.1103/PhysRevB.97.064403

    Article  Google Scholar 

  191. Garanin, D.A., Jaafar, R., Chudnovsky, E.M.: Breathing mode of a skyrmion on a lattice. Phys. Rev. B 101, 14418 (2020). https://doi.org/10.1103/PhysRevB.101.014418

    Article  Google Scholar 

  192. Zeng, Z., Zhang, C., **, C., Wang, J., Song, C., Ma, Y., Liu, Q., Wang, J.: Dynamics of skyrmion bags driven by the spin-orbit torque. Appl. Phys. Lett. 117, 172404 (2020). https://doi.org/10.1063/5.0022527

    Article  Google Scholar 

  193. Wu, Y., Wen, H., Liu, J., Lai, K., Zheng, Y.: Atomistic simulations of spin-lattice coupling effects on magnetomechanics in skyrmion materials. Phys. Rev. B 100, 144310 (2019). https://doi.org/10.1103/PhysRevB.100.144310

    Article  Google Scholar 

  194. Wu, Y., Wen, H., Chen, W., Zheng, Y.: Microdynamic study of spin-lattice coupling effects on skyrmion transport. Phys. Rev. Lett. 127, 097201 (2021). https://doi.org/10.1103/PhysRevLett.127.097201

    Article  Google Scholar 

  195. Cho, J., Kim, K.W., Lee, M.J., Lee, H.J., Kim, J.S.: Non-equilibrium chiral domain wall dynamics excited by transverse magnetic field pulses. J. Phys. Condens. Matter. 33, 015803 (2020). https://doi.org/10.1088/1361-648X/abb64f

    Article  Google Scholar 

  196. Hu, J.M., Yang, T., Wang, J., Huang, H., Zhang, J., Chen, L.Q., Nan, C.W.: Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 15, 616–622 (2015). https://doi.org/10.1021/nl504108m

    Article  Google Scholar 

  197. Fang, S., Chen, H., Wang, T., Jiang, Y., Bi, Z., Ma, L.: Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum. Appl. Phys. Lett. 102, 231118 (2013). https://doi.org/10.1063/1.4809736

    Article  Google Scholar 

  198. Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth, R., Guelachvili, G., Hänsch, T.W., Picqué, N.: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010). https://doi.org/10.1038/nphoton.2009.217

    Article  Google Scholar 

  199. Sun, J., Shi, S., Wang, J.: Strain modulation of magnonic frequency comb by magnon-skyrmion interaction in ferromagnetic materials. Adv. Eng. Mater. 2021, 2101245 (2021). https://doi.org/10.1002/adem.202101245

    Article  Google Scholar 

  200. Behncke, C., Adolff, C.F., Lenzing, N., Hänze, M., Schulte, B., Weigand, M., Schütz, G., Meier, G.: Spin-wave interference in magnetic vortex stacks. Commun. Phys. 1, 50 (2018). https://doi.org/10.1038/s42005-018-0052-1

    Article  Google Scholar 

  201. Chang, L.J., Chen, J., Qu, D., Tsai, L.Z., Liu, Y.F., Kao, M.Y., Liang, J.Z., Wu, T.S., Chuang, T.M., Yu, H., Lee, S.F.: Spin wave injection and propagation in a magnetic nanochannel from a vortex core. Nano Lett. 20, 3140–3146 (2020). https://doi.org/10.1021/acs.nanolett.9b05133

    Article  Google Scholar 

  202. Henry, Y., Stoeffler, D., Kim, J.V., Bailleul, M.: Unidirectional spin-wave channeling along magnetic domain walls of Bloch type. Phys. Rev B 100, 024416 (2019). https://doi.org/10.1103/PhysRevB.100.024416

    Article  Google Scholar 

  203. Van De Wiele, B., Hämälaïnen, S.J., Baláz, P., Montoncello, F., Van Dijken, S.: Tunable short-wavelength spin wave excitation from pinned magnetic domain walls. Sci. Rep. 6, 21330 (2016). https://doi.org/10.1038/srep21330

    Article  Google Scholar 

  204. Hämäläinen, S.J., Madami, M., Qin, H., Gubbiotti, G., van Dijken, S.: Control of spin-wave transmission by a programmable domain wall. Nat. Commun. 9, 4853 (2018). https://doi.org/10.1038/s41467-018-07372-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Shi, S., Wang, Y. et al. Phase field modeling of topological magnetic structures in ferromagnetic materials: domain wall, vortex, and skyrmion. Acta Mech 234, 283–311 (2023). https://doi.org/10.1007/s00707-022-03395-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03395-0

Navigation