Log in

Mannosylated glycoconjugates on the surface of activated sperm in the giant freshwater prawn are crucial for sperm binding with the egg vitelline envelop

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The unusual morphology and poorly defined acrosome-like structure in the mature sperm of the giant freshwater prawn Macrobrachium rosenbergii has led to difficulties in identifying the state of sperm activation. Mature distal vas deferens sperm (dVSp) can be activated by the calcium ionophore A23187 to show acrosome reaction-like enzymatic activities that increase their binding and penetration capabilities. However, these short-lived enzymatic activities limit their usefulness as a marker of sperm activation for further qualitative and quantitative analyses, leading to our examining the alterations in the exposure of sperm surface glycoconjugates both as markers of sperm activation and for their role in gamete interaction. Our results showed that after A23187 treatment, there was an increased exposure of mannosylated glycoconjugates on the sperm surface revealed by significant Concanavalin A (Con A) staining. Furthermore, sodium metaperiodate pre-treatment, Con A pre-incubation, or co-incubation with α-mannose monosaccharides all significantly reduced A23187-induced dVSp binding to the egg vitelline envelop, demonstrating the importance of sperm surface mannosylated glycoconjugates in the binding process. These same pre-treatments of sperm also resulted in the inhibition of the binding of soluble vitelline envelop proteins (MrVE) to both the sperm surface and to mannosylated dVSp protein bands. Therefore, the present study demonstrated the importance of the exposure of mannosylated glycoconjugates on the surface of activated dVSp, both as a reliable marker of sperm activation and as a binding factor in the gamete interaction process. Furthermore, these findings allow for a better understanding of the surface glycoconjugate-mediated interaction process between gametes in this species of prawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken RJ (2006) Sperm function tests and fertility. Int J Androl 29:69–75

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Thomas M, Thaler CD (2004) Sperm membrane dynamics assessed by changes in lectin fluorescence before and after capacitation. J Androl 25:744–751

    Article  PubMed  Google Scholar 

  • Benoff S (1997) Carbohydrates and fertilization: an overview. Mol Hum Reprod 3:599–637

    Article  CAS  PubMed  Google Scholar 

  • Clark GF (2014) A role for carbohydrate recognition in mammalian sperm-egg binding. Biochem Biophys Res Commun 450:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Clark WH Jr, Griffin FJ (1988) The morphology and physiology of the acrosome reaction in the sperm of the decapod, Sicyonia ingentis. Dev Growth Differ 30:451–462

    Article  Google Scholar 

  • Cross NL, Watson SK (1994) Assessing acrosomal status of bovine sperm using fluoresceinated lectins. Theriogenology 42:89–98

    Article  CAS  PubMed  Google Scholar 

  • D’Cruz OJ, Lambert H, Haas GG Jr (1997) Expression of CD15 (Lewisx) antigen on human sperm and its role in sperm-egg interaction. Am J Reprod Immunol 37:172–183

    Article  CAS  PubMed  Google Scholar 

  • Diekman A (2003) Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cellular and Molecular Life Sciences CMLS 60:298–308

    Article  CAS  PubMed  Google Scholar 

  • Dupré E, Gómez D, Araya A, Gallardo C (2012) Role of egg surface glycoconjugate in the fertilization of the rock shrimp Rhynchocinetes typus (Milne-Edwards, 1837). Lat Am J Aquat Res 40:22–29

    Article  Google Scholar 

  • Dupré EM, Barros C (2011) In vitro fertilization of the rock shrimp, Rhynchocinetes typus (Decapoda, Caridea): a review. Biol Res 44:125–133

    Article  PubMed  Google Scholar 

  • Evans JP (2012) Sperm-egg interaction. Annu Rev Physiol 74:477–502

    Article  CAS  PubMed  Google Scholar 

  • Fallis LC, Stein KK, Lynn JW, Misamore MJ (2010) Identification and role of carbohydrates on the surface of gametes in the zebra mussel, Dreissena polymorpha. Biol Bull 218:61–74

    Article  CAS  PubMed  Google Scholar 

  • Gadella BM, Tsai PS, Boerke A, Brewis IA (2008) Sperm head membrane reorganisation during capacitation. Int J Dev Biol 52:473–480

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Costantini M (2012) Glycobiology of reproductive processes in marine animals: the state of the art. Marine drugs 10:2861–2892

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Torres MJ, Avilés M, Girela JL, Murcia V, Fernández-Colom PJ, Romeu A, Juan Jd (2012) Characterization of the lectin binding pattern in human spermatozoa after swim-up selection.

  • Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, Hoshi M (2008) Egg and sperm recognition systems during fertilization. Dev Growth Differ 50:S221–S238

    Article  CAS  PubMed  Google Scholar 

  • Hirohashi N, Vilela-Silva A-CE, Mourão PA, Vacquier VD (2002) Structural requirements for species-specific induction of the sperm acrosome reaction by sea urchin egg sulfated fucan. Biochem Biophys Res Commun 298:403–407

    Article  CAS  PubMed  Google Scholar 

  • Hoshi M, Moriyama H, Matsumoto M (2012) Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: A mini review. Biochem Biophys Res Commun 425:595–598

    Article  CAS  PubMed  Google Scholar 

  • Hossain MS, Johannisson A, Wallgren M, Nagy S, Siqueira AP, Rodriguez-Martinez H (2011) Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J Androl 13:406–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito C, Toshimori K (2016) Acrosome markers of human sperm. Anat Sci Int 91:128–142

    Article  CAS  PubMed  Google Scholar 

  • Jacklin M, Combes J (2007) The good practice guide to handling and storing live Crustacea. vol GPG 0505. https://www.seafish.org/publications. Sea Fish Industry Authority Publication

  • Jaruwan Poljaroen RV, Yotsawan Tinikul, Ittipon Phoungpetchara, Vichai Linthong, Wattana Weerachatyanukul, Prasert Sobhon (2010) Spermatogenesis and distinctive mature sperm in the giant freshwater prawn, Macrobrachium rosenbergii (De Man,1879). Zoologischer Anzeiger - A Journal of Comparative Zoology

  • Jiménez I, González-Márquez H, Ortiz R, Herrera JA, Garcia A, Betancourt M, Fierro R (2003) Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa. Theriogenology 59:1171–1180

  • Johnston C, Jungalwalla P (2004) Aquatic animal welfare guidelines: Guidelines on welfare of fish and crustaceans in aquaculture and/or in live holding systems for human consumption. National Aquaculture Council Inc, pp 38

  • Kekäläinen J, Larma I, Linden M, Evans JP (2015) Lectin staining and flow cytometry reveals female-induced sperm acrosome reaction and surface carbohydrate reorganization. Sci Rep 5:15321

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruevaisayawan H, Vanichviriyakit R, Weerachatyanukul W, Iamsaard S, Withyachumnarnkul B, Basak A, Tanphaichitr N, Sobhon P (2008a) Induction of the acrosome reaction in black tiger shrimp (Penaeus monodon) requires sperm trypsin-like enzyme activity. Biol Reprod 79:134–141

    Article  CAS  PubMed  Google Scholar 

  • Kruevaisayawan H, Vanichviriyakit R, Weerachatyanukul W, Iamsaard S, Withyachumnarnkul B, Basak A, Tanphaichitr N, Sobhon P (2008b) Induction of the acrosome reaction in black tiger shrimp (Penaeus monodon) requires sperm trypsin-like enzyme activity1. Biol Reprod 79:134–141

    Article  CAS  PubMed  Google Scholar 

  • Liu M (2016) Capacitation-associated glycocomponents of mammalian sperm. Reprod Sci 23:572–594

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Qu F, Cao X, Chen G, Guo Q, Ying X, Guo W, Lu L, Ding Z (2012) Con A-binding protein Zn-α2-glycoprotein on human sperm membrane is related to acrosome reaction and sperm fertility. Int J Androl 35:145–157

    Article  PubMed  Google Scholar 

  • Lynn WC, JW, (1983a) The fine structure of the mature sperm of the freshwater prawn, Macrobrachium rosenbergii. Biol Bull 64:459–470

  • Lynn WC, JW, (1983b) A morphological examination of sperm-egg interaction in the freshwater prawn, Macrobrachium rosenbergii. Biol Bull 64:446–458

  • Ma WM, Qian YQ, Wang MR, Yang F, Yang WJ (2010) A novel terminal ampullae peptide is involved in the proteolytic activity of sperm in the prawn, Macrobrachium rosenbergii. Reproduction 140:235–245

    Article  CAS  PubMed  Google Scholar 

  • Magerd S, Asuvapongpatana S, Vanichviriyakit R, Chotwiwatthanakun C, Weerachatyanukul W (2013) Characterization of the thrombospondin (TSP)-II gene in Penaeus monodon and a novel role of TSP-like proteins in an induction of shrimp sperm acrosome reaction. Mol Reprod Dev 80:393–402

    Article  CAS  PubMed  Google Scholar 

  • Mahony MC, Fulgham DL, Blackmore PF, Alexander NJ (1991) Evaluation of human sperm-zona pellucida tight binding by presence of monoclonal antibodies to sperm antigens. J Reprod Immunol 19:269–285

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Menárguez JA, Ballesta J, Avilés M, Castells MT, Madrid JF (1992) Cytochemical characterization of glycoproteins in the develo** acrosome of rats. An ultrastructural study using lectin histochemistry, enzymes and chemical deglycosylation. Histochemistry 97:439–449

    Article  PubMed  Google Scholar 

  • Medeiros CM, Parrish JJ (1996) Changes in lectin binding to bovine sperm during heparin-induced capacitation. Mol Reprod Dev 44:525–532

    Article  CAS  PubMed  Google Scholar 

  • Mengerink KJ (2001) Sea urchin sperm membrane glycoproteins. UC San Diego

  • Mengerink KJ, Vacquier VD (2001) Glycobiology of sperm–egg interactions in deuterostomes. Glycobiology 11:37R-43R

    Article  CAS  PubMed  Google Scholar 

  • New MB (2002) Farming freshwater prawns: a manual for the culture of the giant river prawn (Macrobrachium rosenbergii). Food & Agriculture Org, Rome

    Google Scholar 

  • Nishikimi A, Yamada M, Minami N, Utsumi K (1997) Evaluation of acrosomal status of bovine spermatozoa using Concanavalin A lectin. Theriogenology 48:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Poljaroen J, Vanichviriyakit R, Tinikul Y, Phoungpetchara I, Linthong V, Weerachatyanukul W, Sobhon P (2010) Spermatogenesis and distinctive mature sperm in the giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879). Zoologischer Anzeiger-A Journal of Comparative Zoology 249:81–94

    Article  Google Scholar 

  • Raj I, Sadat Al Hosseini H, Dioguardi E, Nishimura K, Han L, Villa A, de Sanctis D, Jovine L (2017) Structural basis of egg coat-sperm recognition at fertilization. Cell 169:1315-1326.e1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröter S, Osterhoff C, McArdle W, Ivell R (1999) The glycocalyx of the sperm surface. Hum Reprod Update 5:302–313

    Article  PubMed  Google Scholar 

  • Taitzoglou IA, Kokoli AN, Killian GJ (2007) Modifications of surface carbohydrates on bovine spermatozoa mediated by oviductal fluid: a flow cytometric study using lectins. Int J Androl 30:108–114

    Article  CAS  PubMed  Google Scholar 

  • Tecle E, Gagneux P (2015) Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 82:635–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timklay W, Magerd S, Sato C, Somrit M, Watthammawut A, Senarai T, Weerachatyanukul W, Kitajima K, Asuvapongpatana S (2019) N-linked mannose glycoconjugates on shrimp thrombospondin, pmTSP-II, and their involvement in the sperm acrosome reaction. Mol Reprod Dev 86:440–449

    Article  CAS  PubMed  Google Scholar 

  • Tollner TL, Bevins CL, Cherr GN (2012) Multifunctional glycoprotein DEFB126—a curious story of defensin-clad spermatozoa. Nat Rev Urol 9:365

    Article  CAS  PubMed  Google Scholar 

  • Topfer-Petersen E (2001) Glycobiology of fertilization ARCHIV FUR TIERZUCHT 44:114–117

    CAS  Google Scholar 

  • Umezu K, Hiradate Y, Numabe T, Hara K, Tanemura K (2017) Effects on glycocalyx structures of frozen-thawed bovine sperm induced by flow cytometry and artificial capacitation. J Reprod Dev 63:473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watthammawut A, Somrit M, Asuvapongpatana S, Weerachatyanukul W (2015) Enhancement of trypsin-like enzymes by A23187 ionophore is crucial for sperm penetration through the egg vestment of the giant freshwater prawn. Cell Tissue Res 362:643–652

    Article  CAS  PubMed  Google Scholar 

  • Yeung WS, Lee KF, Koistinen R, Koistinen H, Seppala M, Ho PC, Chiu PC (2007) Glycodelin: a molecule with multi-functions on spermatozoa. Soc Reprod Fertil Suppl 63:143–151

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Thailand Research Fund (TRF: Grant No. MRG6080113 to Atthaboon Watthammawut), Srinakharinwirot University Research Grant (493/2559), and Srinakharinwirot University Government Budget Grant (013/2561). The authors would also like to thank all AN104 DR-BIC lab members, all the scientists at the Center of Nanoimaging (CNI) and the Central Instrument Facility at the Faculty of Science, Mahidol University and the Central Lab Facility at the Faculty of Medicine, Srinakharinwirot University.

Funding

This study was funded by the Thailand Research Fund (MRG6080113—Dr. Atthaboon Watthammawut), the Srinakharinwirot University Grant (493/2559) and Government Grant (013/2561), and the Research Support Grant of the Faculty of Science, Mahidol University (Dr. Monsicha Somrit).

Author information

Authors and Affiliations

Authors

Contributions

Monsicha Somrit: conceptualization, visualization, investigation, data curation, validation, resources, funding acquisition; Wattana Weerachatyanukul: conceptualization, supervision, validation, resources, funding acquisition; Somluk Asuvapongpatana: conceptualization, supervision, validation, resources; funding acquisition; Wauranitha Timklay: visualization, investigation, data curation, validation; Atthaboon Watthammawut: conceptualization, methodology, visualization, investigation, data curation, formal analysis, validation, resources, funding acquisition, writing-reviewing and editing, project administration.

Corresponding author

Correspondence to Atthaboon Watthammawut.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study involving prawn were in accordance with the ethical standards and guidelines of the National Research Council of Thailand, Seafish UK (Jacklin and Combes 2007) and the National Aquaculture Council of Australia (Johnston and Jungalwalla 2004). The study was approved by the Animal Care Committee, Mahidol University, Thailand (Animal Ethic No. MUSC61-026-428).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somrit, M., Weerachatyanukul, W., Asuvapongpatana, S. et al. Mannosylated glycoconjugates on the surface of activated sperm in the giant freshwater prawn are crucial for sperm binding with the egg vitelline envelop. Cell Tissue Res 384, 179–193 (2021). https://doi.org/10.1007/s00441-020-03324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03324-4

Keywords

Navigation