Log in

Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The inflated calyx syndrome (ICS) is a post-floral novelty within Solanaceae. Previous work has shown that MPF2-like MADS-box genes have been recruited for the development and evolution of ICS through heterotopic expression from vegetative to floral organs. ICS seems to be a plesiomorphic trait in Physaleae, but it has been secondarily lost in some lineages during evolution. We hypothesized that molecular and functional divergences of MPF2-like proteins might play a role in the loss of ICS. In this study we analyzed the phylogeny, selection and various functions of MPF2-like proteins with respect to the evolution of ICS. Directional selection of MPF2-like orthologs toward evolution of ICS was detected. While auto-activation capacity between proteins varies in yeast, MPF2-like interaction with floral MADS-domain proteins is robustly detected, hence substantiating their integration into the floral developmental programs. Dimerization with A- (MPF3) and E-function (PFSEP1/3) proteins seems to be essential for ICS development within Solanaceae. Moreover, the occurrence of the enlarged sepals, reminiscent of ICS, and MPF2-like interactions with these specific partners were observed in transgenic Arabidopsis. The interaction spectrum relevant to ICS seems to be plesiomorphic, reinforcing the plesiomorphy of this trait. The inability of some MPF2-like to interact with either the A-function or any of the E-function partners characterized is correlated with the loss of ICS in the lineages that showed a MPF2-like expression in the calyx. Our findings suggest that, after recruitment of MPF2-like genes for floral development, diversification in their coding region due to directional selection leads to a modification of the MADS-domain protein interacting spectrum, which might serve as a constraint for the evolution of ICS within Solanaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BiFC:

Bimolecular fluorescent complementation

YFP:

Yellow fluorescent protein

ICS:

Inflated calyx syndrome

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  PubMed  CAS  Google Scholar 

  • Blazquez MA, Ferrandiz C, Madueno F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60:855–870

    Article  PubMed  CAS  Google Scholar 

  • Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell Science, Malden, ISBN 0-632-04511-6

  • Cho S, Jang S, Chae S, Chung KM, Moon Y-H, An G, Jang SK (1999) Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol 40:419–429

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Immink RG, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS-box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed  Google Scholar 

  • Doebley JF, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    PubMed  CAS  Google Scholar 

  • Duttweiler HM (1996) A highly sensitive and non-lethal β-galactosidase plate assay for yeast. Trends Genet 12:340–341

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Fornara F, Gregis V, Pelucchi N, Colombo L, Kater M (2008) The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J Exp Bot 59:2181–2190

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gregis V, Sessa A, Colombo L, Kater M (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102:4908–4912

    Article  PubMed  CAS  Google Scholar 

  • Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  PubMed  CAS  Google Scholar 

  • He CY, Saedler H (2005) Heterotopic expression of MPF2 is the key to the evolution of the Chinese lantern of Physalis, a morphological novelty in Solanaceae. Proc Natl Acad Sci USA 102:5779–5784

    Article  PubMed  CAS  Google Scholar 

  • He CY, Saedler H (2007) Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis. Plant J 49:935–946

    Article  PubMed  CAS  Google Scholar 

  • He CY, Münster T, Saedler H (2004) On the origin of floral morphological novelties. FEBS Lett 567:147–151

    Article  PubMed  CAS  Google Scholar 

  • He CY, Sommer H, Grosardt B, Huijser P, Saedler H (2007) PFMAGO, a MAGO NASHI-like factor, interacts with the MADS-domain protein MPF2 from Physalis floridana. Mol Biol Evol 24:1229–1241

    Article  PubMed  CAS  Google Scholar 

  • He CY, Tian Y, Saedler R, Efremova N, Riss S, Khan MR, Yephremov A, Saedler H (2010) The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time. Planta 231:767–777

    Article  PubMed  CAS  Google Scholar 

  • Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321:172–178

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Saedler H (2007) Evolution of the inflated calyx syndrome in Solanaceae. Mol Biol Evol 24:2443–2453

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist FR, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the Petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606

    PubMed  CAS  Google Scholar 

  • Immink RG, Kaufmann K, Angenent GC (2010) The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 21:87–93

    Article  PubMed  CAS  Google Scholar 

  • Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454–460

    Article  PubMed  CAS  Google Scholar 

  • Janssens SB, Viaene T, Huysmans S, Smets EF, Geuten KP (2008) Selection on length mutations after frameshift can explain the origin and retention of the AP3/DEF-like paralogues in Impatiens. J Mol Evol 66:424–435

    Article  PubMed  CAS  Google Scholar 

  • Kane NA, Danyluk J, Tardif G, Ouellet F, Laliberté J-F, Limin AE, Fowler DB, Sarhan F (2005) TaVRT-2, a member of the StMADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138:2354–2363

    Article  PubMed  CAS  Google Scholar 

  • Khan MR, Hu J, Riss S, He CY, Saedler H (2009) MPF2-like-A MADS-box genes control the inflated calyx syndrome in Withania (Solanaceae): roles of Darwinian’s selection. Mol Biol Evol 26:2463–2473

    Article  PubMed  CAS  Google Scholar 

  • Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gene Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kramer EM, Su HJ, Wu CC, Hu JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol Biol 6:30

    Article  PubMed  Google Scholar 

  • Krizek BA, Meyerowitz EM (1996) Map** the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl Acad Sci USA 93:4063–4070

    Article  PubMed  CAS  Google Scholar 

  • Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L (2008) Interaction study of MADS-domain proteins in tomato. J Exp Bot 59:2253–2265

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  PubMed  CAS  Google Scholar 

  • Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:5981–5990

    Article  PubMed  CAS  Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  PubMed  CAS  Google Scholar 

  • Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181

    Google Scholar 

  • Piwarzyk E, Yang Y, Jack T (2007) Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiol 145:1495–1505

    Article  PubMed  CAS  Google Scholar 

  • Rijpkema AS, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Cur Opin Plant Biol 10:32–38

    Article  CAS  Google Scholar 

  • Riss S (2009) Isolation and analysis of MPF2-like MADS-box genes from Physaleae and characterization of their cis-regulatory regions. PhD thesis, Universität zu Köln

  • SanMiguel P, Tikhonov A, ** YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Sentoku N, Kato H, Kitano H, Imai R (2005) OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Mol Genet Genomics 273:1–9

    Article  PubMed  CAS  Google Scholar 

  • Shan H, Zahn L, Guindon S, Wall PK, Kong H, Ma H, dePamphilis CW, Leebens-Mack J (2009) Evolution of plant MADS box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol Biol Evol 26:2229–2244

    Article  PubMed  CAS  Google Scholar 

  • Su K, Zhao S, Shan H, Kong H, Lu W, Theissen G, Chen Z, Meng Z (2008) The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals. New Phytol 178:544–558

    Article  PubMed  CAS  Google Scholar 

  • Szymkowiak EJ, Irish EE (2006) JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta 223:646–658

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) SVP-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas R, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley JF (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Jack T (2004) Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins. Plant Mol Biol 55:45–59

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59

    Article  PubMed  Google Scholar 

  • Yang Z, Wong W, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Ito T, Wellmer F, Meyerowitz EM (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. T Münster and H Sommer for offering cDNA clones of ZMM19 and INCO, respectively. We thank Dr. T Sang and C–P Stelzer for their valuable suggestions to improve the manuscript. CYH is grateful to Dr. H. Saedler for his support and advice. This work was supported by the National Natural Science Foundation of China (30870175) and the Hundred Talents Project of the Chinese Academy of Sciences to CYH. RMK was supported by a Higher Education Commission, Pakistan, and Deutscher Akademischer Austausch Dienst fellowship, and SR was supported by a fellowship of the Max-Planck-Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoying He.

Additional information

J. Zhang and M.R. Khan equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Khan, M.R., Tian, Y. et al. Divergences of MPF2-like MADS-domain proteins have an association with the evolution of the inflated calyx syndrome within Solanaceae. Planta 236, 1247–1260 (2012). https://doi.org/10.1007/s00425-012-1684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1684-0

Keywords

Navigation